
C O D E A R T B R U TA L I S M :

L O W - L E V E L S Y S T E M S

A N D S I M P L E

P R O G R

A M

S

227

B r u t a l i s m , more properly known as “New Brutalism” in its hey-
day, is arguably one of the most unpopular and least understood
architectural styles of the 20th Century. It is mostly associated
with rough-cast concrete buildings where its name is linked with
the “beton brut” casting technique used by le Corbusier in the
Unité d ’Habitation, Marseille (1952). [Fig. 1] The term was adopt-
ed by young British architects of the 1950’s, seeking a name to dis-
tinguish themselves from the prevalent style of their elders, one
which harked back to traditional, pre-Modernist building styles.1

Alison and Peter Smithson were its key proponents who
described Brutalism as an ethic rather than an aesthetic.

simon yuill

1 le Corbusier, Unite d'Habitation, 1952

S I M O N Y U I L L

228

An attitude to how buildings and their materials should be used,
it sought to re-think architectural practice through abandoning
stylistic and metaphorical constructs. Brutalist designs often
consciously exposed the basic, raw materials of industrial build-
ing, “demythologising concrete and recognising it for what it
is.”2 Similarly, its proponents attempted to develop attitudes to
urban planning that accepted the complexity and confusion of
existing social situations rather than impose idealised models
onto them.3

The exposure of a raw materiality is prevalent in much current code
art, such as JODI’s untitled game and JET SET WILLY Variations,4 and
Gameboy sound hacks.5 [Fig. 2] These works often bring the, nor-
mally hidden, basic materials from which digital works are made
(code and data structures) into the foreground. Such works are
often linked with, or perceived as, a form of nostalgia for “old
skool” coding, but they are often as much an archaeology of the
present, de-metaphorising interface-based software and reassert-
ing the inherent aesthetics of pixels and code outwith any mimetic
representational role. Yet these projects still accept a certain
degree of interface as given, whether it is a Gameboy chassis or the
familiar keyboard and monitor setup of the domestic PC. There

code, text

2a Jodi, Jet set willy. Variations,

2003, screen grab

2b assembly code from

game engine

229

is, however, a whole field of programming that deals much more
fundamentally with the manipulation and execution of code by
machine: assembly coding and the world of simple programs.

Assembly and simple programs
Assembly languages are a set of human-readable programming
languages which relate closely to the mechanics of processor chips.
Commands in assembly often refer directly to the physical actions
of the processor, moving values in and out of memory locations, or
turning the pins that connect processors to their host circuits on
and off. Individual assembly commands can be related directly to
the binary machine instructions, or opcodes, that the processor
responds to, and many chip manufacturers provide tables that map
specific binary values to assembly commands. [Fig. 3] Because of
this close proximity to the mechanics of the hardware, assembly
languages are described as low-level languages in contrast to high-
level languages, such as C or Java. These are more distant from the
hardware and use commands that generally relate more to the
human understanding of what a program does. Whilst low-level

simon yuill

3a PIC16f84 data sheet, 3b assembly instructions

and binary opcodes

230

actions, such as bit operations, can be expressed in them, many
high-level languages effectively clothe the machine operations in
a set of metaphors which enable us to construct programs in
accord with our own conceptual structures. Even basic functions
such as subtraction and division are metaphorical expressions for
particular machine actions which relate those actions to the
entirely human concept of mathematics. The common concep-
tion of computers as essentially mathematical devices is, in this
sense, inaccurate. It would be more precise to state that they are
machines capable of manipulating binary patterns which simulate
aspects of human mathematics. It is in those areas of coding that
deal directly with this pattern-making process that we encounter
a kind of Brutalism.

This pattern-making process is often best expressed through “simple
programs”. Simple programs are those which perform a small set
of basic operations on a set of constituent components producing
some kind of output which may or may not have any functional
value. A simple program applied to a lightbulb, for example,
might take the form:

turn light on
wait 5 seconds
turn light off
wait 5 seconds
repeat

Indeed the most interesting simple programs are often those which
have no obvious purpose yet which nevertheless exhibit particular
distinctive behaviours. The physicist Stephen Wolfram has dedicat-
ed a large part of his life to the study of such programs, attempting
to explain and catalogue their behaviours like a 19th Century plant
collector.6 One significant species of simple program that he has
examined is that of cellular automata. A cellular automaton consists
of a set of cells in a grid or line which may have two or more states.
These are frequently represented as a series of squares which are
coloured to indicate their current state. A typical program for a cel-

code, text

231

lular automaton simply determines what state a cell should turn to
given its current state and those of its neighbouring cells. Wolfram
has catalogued a total of 256 such programs for just one particular
type of cellular automata. He illustrates the rules of these programs
in a simple graphical form with their output displayed on a grid in
which the cells start in their initial states on the top line and show
their changes over time as they move down the grid. [Fig.4]

Cellular automata first developed as a past-time of the mathematician
Stanislaw Ulam who, in the late 1940’s, created games in which
2-D and 3-D structures were generated through simple rule sys-
tems.7 John von Neumann adopted and formalised Ulam’s games
as a means of exploring the possibility of a self-reproducing
machine. His work demonstrated that many mathematical and
computational systems, such as Turing machines, could be simulat-
ed on them.8 There are strong similarities between the operations
performed in cellular automata and the basic instruction sets of

simon yuill

4b cellular automata rule. © Stephen Wolfram, LLC, 2002

4a evolution over 25 steps. © Stephen Wolfram, LLC, 2002

232

assembly languages9. Wolfram has largely built on this work, sim-
plifying von Neumann’s automata and demonstrating that very
complex behaviours can be generated from simple programs.
Interestingly, many of the significant developments in cellular
automata have emerged from purposeless play, such as Ulam’s games
and John Conway’s life.10 As Wolfram has stated, understanding of
simple programs, such as the cellular automata, often develops out
of a kind of “abstract aesthetic” interest in their innate properties and
behaviours rather than functionally driven analyses.11

HAKMEM

Distributed as an internal report in 1972 at the MIT AI lab, HAK-
MEM (short for “hack memo”) is a classic compilation of early
computer hacks, mostly designed for the then current PDP-10 sys-
tem12. Its contributers include various luminaries of 1960’s and
early ‘70’s computing such as Marvin Minsky, Bill Gosper and
Richard Stallman. It includes mostly mathematical algorithms
but also some plans for hardware devices, such as illegal radio
packet transmitters, and a section called “Programming Hacks”
which covers various tricks to produce visual and audio effects.

The PDP-10 (Programmed Data Processor model 10) was one of
a series of mainframe machines produced by the Digital
Equipment Corporation (DEC) in the 1960’s and ‘70’s and was
popular with many of the computing research labs in the States at
that time. The first distributed computer game, Spacewar!, was
created for a PDP as were the first successful timesharing
systems13. The PDP series were programmed in their own assem-
bly language and many of the entries in HAKMEM are based on
specific features of the PDP instruction set and binary system.
Item 174, for example, points out that “21963283741 is the only num-
ber such that if you represent it on the PDP-10 as both an integer
and a floating-point number, the bit patterns of the two represen-
tations are identical.” In Item 154, Bill Gosper wryly explains how
the particular form of binary representation used on a given hard-

code, text

233

ware system can alter the results of certain types of calculations.
Many of the examples in HAKMEM are forms of “simple program”,

although often looser and more intuitive than Wolfram’s cellular
automata programs. One such example is Gosper’s “display hack”,
Item 145, “proving that short programs are neither trivial nor
exhausted.” It uses just four lines of code, the second line of which
can be substituted with various alternatives. The output produces
“pretty pictures” on the display screen and can also be wired to a
stereo amplifier to produce audible forms. Item 146 presents the
Munching Squares algorithm, originally discovered by Jackson
Wright in 1962. It consists of five lines of code which can produce
a variety of different visual forms which relate closely to those of
cellular automata.14 [Fig. 5]

Gosper was one of the pioneers of cellular automata research in the
1970’s and implemented a version of Conway’s life in the text edi-
tor program TECO15. TECO was a form of programmable text
editor that ran on PDP’s and has since been replaced by applica-
tions such as Emacs.16 TECO made no distinction between con-
tent and program code, any text entered into it could be treated as
a command. TECO’s own command set was extremely concise,

simon yuill

5 two variations of Munching Squares, from Hacks.html

http://web.onetel.com/~hibou/ Hacks.html

234

consisting largely of single character commands that often related
to keyboard shortcuts. The following program takes a set of
names, and lists them alphabetically according to lastname:
[1 J^P$L$$ J <.-Z; .,(S,$ -D .)FX1 @F^B $K :L I $ G1 L>$$

The ̂ P, for example, is the command for “sort”17. In many ways the syn-
tax of regular expressions is a descendent of TECO, and such expres-
sions can be seen as a form of “simple program” that operates on text
rather than binary cell structures. Many codewurkers, such as Alan
Sondheim and mez, as well as free-form ascii artists, use such
devices to produce their work —a kind of raw “textual automata.”18

PIC progs
Modern computer systems have grown so much in processing
capability that the dexterity and genius that lay behind many of the
HAKMEM examples is hard to appreciate. In many ways the
descendents of this particular programming ethos are to be found
not in mainstream software but in the work of microchip coders.
Microchips provide basic processor systems on a single chip (such
as are found in mobile phones and electronic toys) and many cur-
rent processors are of similar capabilities as the early large-scale
computer systems. The availability of cheap microchips like the
PIC have made chip programming popular with hobbyists.
A variety of high-level programming languages are available for
microchip development, but the vast majority of programmers still
use the native assembly languages of the actual chips. In many
ways, a lot of these projects are even more reduced in material
resources than those of the PDP developers, relying on breadboard
circuits, LED lights and simple piezo-amplifiers. In terms of
hardware and software these are the most stripped down, inter-
face-bare realisations and therefore the most ‘brutal’ in terms of
their raw simplicity.

slowcount.asm is a demo program that is distributed on the Yappa web-
site. Yappa is a simple programming interface for PIC
microchips developed by Mark Colclough19. In the world of
microchip programming, the standard equivalent of

code, text

235

“HelloWorld” is a simple program that controls an LED flashing
on and off repeatedly. slowcount.asm is an extension of this
designed for the PIC16f84 chip. The program runs a loop that
treats the input/output pins of the chip as a binary counter, turn-
ing each pin on and off in representation of the current count.
The chip is placed in a circuit in which the 8 of the pins can be
connected to LED lights and a small audio speaker. The LEDs
flash at different rates relating to the binary value they represent.
Those representing the most significant bits being slowest, whilst
the least significant bits, which change at a faster rate, produce an
audible hum when connected to the speaker. [Fig. 6] It has strong
parallels with some of the sound and video hacks for the PDP-10.
HAKMEM Item 168, for example, provides a program that sets up
an endless loop of incremental bit operations, and suggests con-
necting speakers to the output pins and listening to “the square
waves from the low bits of [pin] 0.”

Wolfram’s work with cellular automata is largely based around
automata which expand infinitely as they progress but he has also

simon yuill

6a hardware setup for slowcount.asm,

6b beginning and end of LED states from 0 to 255, black

squares are on, white squares are off

236

looked into fixed-width automata which use the same number of
cells throughout. slowcount.asm can be understood as a form of
fixed-width automata and the code could be easily changed to
express other fixed-width automata programs20. Fundamentally
it is a raw expression of assembly code behaviour, and, like the
Munching Squares algorithm, demonstrates the congruity of binary
processor mechanics and cellular automata —both being forms of
“simple program” and neither being developed for any purposeful
mathematical exercise.

ap
Rather than designing one-off buildings, many Brutalist architects
were interested in creating habitats, adaptable social complexes
that were capable of supporting small communities. Examples
include the Ivor Smith and Jack Lynn’s Park Hill estate in
Sheffield, Kunio Mayekawa’s Harumi apartment block, Tokyo,
and Moshe Safdie’s Habitat, Toronto.21 ap have taken a similar
approach in their creation of an entirely new form of operating
system, one which could be described more in terms of a habitat
for code. Echoing the Smithsons, ap argue that existing operat-
ing systems are restricted by “antiquated tool metaphors, and the
limiting notions/divisions of system, user and programmer,” and
that instead data generation should be liberated from such
imposed models.22

Like the Brutalist habitats, ap projects emphasize modularity and
topology as the principle design factors. The Smithsons cited the
traditional Japanese house as a model, capable of changing the
internal structure and function of its rooms over the course of a
day23. The notion of modular design had developed through 20th
Century architecture from its adaption of industrial process and in
the 1950’s and ‘60’s was a key interest spreading from Brutalists to
the Pop architecture of Archigram.24 In Cedric Price’s Fun Palace
design the only permanent features were a skeletal grid and set of
cranes which could place wall and floor components into an endless
variety of structures, an approach which was applied to larger urban
systems in many Archigram proposals .25 The basic UNIX architec-

code, text

237

ture is constructed on a modular principle that can facilitate tempo-
rary connections between different components to suit users’ needs.
The overall function of these is expressed in the topology of the
pipelines and process forks that connect them. The ap OS takes this
further, constructed as an environment of multi-purpose units
whose individual behaviour is often determined by their connec-
tions to other units —depending on what types of input each pro-
vides. As the units have the capability to autonomously reconnect
themselves to others, the behaviour of the system may constantly
fluctuate in accord with its topological mutation. These units often
operate as simple programs processing data for their own sake, as an
expression of their inner structure rather than according to a pur-
poseful end. In contrast to UNIX, which is a modular architecture of
software applications, ap propose modular software that seeks, and
perhaps denies, its own applicability.

In ap0202 each unit runs as a small scale virtual machine that provides
a basic series of bitshifting operations. As with TECO, the system
makes no distinction between content data and program code.
All input is treated as patterns of binary data which are processed
according to simple programs analogous to those of cellular
automata and forms of genetic splicing and mutation. Incoming
patterns that match the instruction set for a given unit effectively
reprogram it, thereby causing new behaviours to emerge within
the system in an autopoeitic fashion.There are parallels with the
Smithson’s notion of cluster compositions: “a closenit, complicat-
ed, often-moving aggregation.” 26

One of the greatest problems of many of the Brutalist habitats was
that they aspired, yet failed, to be complete self-contained envi-
ronments that met their inhabitants’ needs —insular, artificial par-
adises which often became urban hells.27 The ap OS is, by con-
trast, open and “promiscuous” with its external environment.28

Specialised units can take input from various sources, such as video
cameras, sound and other sensors, all of which are potentially
capable of reprogramming the units that receive their data. In the
“self display devices” of ap0201, the system has been transfered

simon yuill

238

from virtual machines running on desktop computers to
microchips. A set of solar-powered versions of the device are cur-
rently installed at a location in the Mojave desert, California.
One of the main aims of this project is to determine what new
forms of program are generated in response to the extreme condi-
tions of that environment. [Fig. 7]

Brutalism was not only a challenge to the conservative “garden city”
suburbanism of post-war Britain. For practitioners, such as the
Smithsons, whilst it followed on from Modernism, Brutalism also
reacted against what they considered to be the over stylised
“Machine Aesthetic” of Modernist design. This metaphorised
buildings as ships and engines, subjecting materials, such as con-
crete, to highly refined finishing and rendering processes that sup-
pressed their innate qualities in favour of sleek stylistic statements.
There is a similar attitude underlying ap’s raw data processing,
their stated desire to avoid metaphorisation of this, and its contrast
to the highly stylised “information design” of John Maeda and his
students. In their move away from conventional computer media
and the rehashing of existing interfaces, they also move beyond the
dysfunctionalist rhetoric of much recent software art. They do not
so much upset our expectations of what software should do as
reveal that those expectations are still highly constrained.

code, text

7 one of the ap0201 devices in the Mojave desert, 2004

Conclusion
Brutalist architecture was possibly more successful in its principles
than its realisation. Despite the desire to abandon aesthetics,
a distinctive aesthetic nevertheless emerges from Brutalist designs.
At its worst this is merely a stylistic gesture, but at its best it relates
the deployment of its materials back to something of Brutalism’s
ethical ambitions, emphasising both the materiality and contin-
gency of constructed form. There is also something inherently
‘difficult’ about such works, they almost defy you to like them.
Their ungainly rawness suggests an incompleteness rather than
finality of design, and this is perhaps why a similar aesthetic/ethic
is at play in so much classic hacker code and low-level program-
ming. The examples discussed here are mostly neither complicat-
ed nor especially ‘elegant’ pieces of code and their aesthetic value,
in many cases, arises directly from their lack of aesthetic intent.

A Brutalist approach to software demythologises code and
recognises it for what it is. High-level programming approaches

can be very successful in achieving certain ends, but the very impo-
sition of higher-level constructs and metaphors also limits aware-

ness of how code operates in and for itself and what may be
achieved through that. Arguably it is the changes in low-
level systems that have provoked the biggest paradigm

shifts, such as the development of binary computa-
tion and Turing machines, and such as Wolfram is
suggesting will be the case in fully understanding

simple programs. What emerges from the
Mojave desert may be a new form of

software culture, or it may just be
meaningless data, but what is

most important is the
underlying attitude

which has
enabled

it
.

240

1 Reyner Banham: The New Brutalism: Ethic or Aesthetic?,
Architectural Press, London 1966, p.10

2 Banham, ibid., p.17
3 Banham, ibid., pp.71–72
4 http://www.untitled-game.org, http://jetsetwilly.jodi.org
5 Such as Nanoloop, http://www.nanoloop.de, and Little Sound DJ,

http://www.littlesounddj.com
6 Stephen Wolfram: A New Kind of Science, Wolfram Media,

Champaign 2002
7 http://www.brunel.ac.uk/depts/AI/alife/al-ca.htm
8 John von Neumann: “Theory and Organization of Complicated

Automata,” in A. W. Burks (editor), Theory of Self-Reproducing
Automata, University of Illinois Press, Urbana 1949, pp.29-8&, see
also Wolfram, op. cit.

9 A range of different parallels are examined in Wolfram, op. cit.
10 Martin Gardner: “The fantastic combinations of John Conway’s

new solitaire game ‘life’,” in Scientific American 223, October 1970,
pp.120–123

11 Wolfram, ibid., p.109
12 http://home.pipeline.com/~hbaker1/hakmem/hakmem.html
13 http://www.brouhaha.com/~eric/retrocomputing/pdp-10
14 Its relationship to cellular automata is discussed in Eric W.

Weisstein: “Munching Squares” from MathWorld—A Wolfram Web
Resourc,. http://mathworld.wolfram.com/MunchingSquares.html

15 Eric Raymond: “life”, The Jargon File,
http://www.catb.org/~esr/jargon/html/L/life.html

16 Eric Raymond: “TECO”, The Jargon File,
http://www.catb.org/~esr/jargon/html/T/TECO.html

17 This is equivalent to the ‘control —p’ combination on the key-
board. The program itself is a bit more complex than described,
see Raymond, ibid.

18 A repository of such work is maintained by Florian Cramer
through his unstable digest postings to the nettime mailing list,
http://amsterdam.nettime.org

19 http://www.cm.ph.bham.ac.uk/software/yappa/
20 See Wolfram, op cit., pp. 255–260, for an analysis of fixed width

automata
21 For Park Hill see Banham, op cit., pp.41–43, for Harumi, Banham,

op cit., p.131, and for Habitat, Moshe Safdie: Beyond Habitat, MIT
Press, Massachusetts 1970

22 http://www.1010.co.uk
23 Banham, op. cit., p.45
24 Banham, op. cit., p. 18, Peter Cook, et al.: A Guide to Archigram

1961— 1974, Academy Editions, London 1994
25 Banham, op. cit., p.43, and, Cedric Price: Works II, Architectural

Association, London 1984, pp.56–61
26 The Smithsons, quoted in Banham, op. cit., p.73
27 Park Hill was a disaster, Safdie’s Habitat, however, has been highly

successful, this may be in large part to the fact that the inhabitants
are heavily involved in running and maintaining the building
as a community.

28 ap’s own term for it, as in systems which are both open to all forms
of incoming data and actively seeking other available data else-
where on the network.

