
S O F T WA R E A R T

A N D P O L I T I C A L

I M P L I C AT I O N S

I N A L G

O R I T

H M

S

79

B e f o r e we invented computers to develop artificial intelligence
applications and to try to use them as if they were our augmented
brains that could help us to gain memory, calculability and evolve
new creative abilities, somebody had to start thinking that our
thought could be equivalent to calculus or that through logical
calculus we could emulate the way we think. Many say that one
of the firsts to believe in the power of the logical calculus and the
possibility of its automation was Raimundus Lulius, a well known
philosopher from Mallorca, now considered to be one of the finest
historical personalities in Catalonia.

Raimundus Lulius, or Ramón Llull in catalan, (1235–1315) developed
his “Ars Combinatoria”, later Leibniz commented it in his
“Dissertatio de arte combinatoria” (1666) and spread his thoughts
throughout Europe making valuable contributions to logical cal-
culus. Llull, who then learned the principles of algebra from his
Arab assistant, asserted the calculability of problems and invented
a mechanical way to solve them with the aid of a limited number
of basic terms called “the alphabetum”, as an instrument that
could reach the truth. So in his symbolic games he established the
assumption of analogy between the logical functions of the brain
and a logical machine (as the one he designed, made with three
concentric circles).

Since then many other experiences have conducted to the formaliza-
tion of human thought and to the creation of symbolic machines
as machines capable to simulate our thought. Now we have com-

pau david alsina gonzalez

PA U DAV I D A L S I N A G O N Z A L E Z

80

puters crossing our culture and it sounds familiar to us to think
about computer science as based on this double basis of both logi-
cal calculus and automation. As T Sales1 says there are as much as
10 components of the “Ars” Lulian system, that could perfectly fit
into Computer Science studies as for example: the idea of the
solutions calculability of logical reasoning (explored by Leibniz),
the idea of a alphabet of human thinking (mathematically inter-
preted by George Boole), the idea of a general method (heuristic
and deductive) the idea of the logical analysis; the notion of
a generative system,; the operation through diagrams; or even
the graphs theories that order the “Ars” triangular figures.

So others have followed this path and developed automatic machines
that evolved into what we now experience as computers; as we
already know, key developments were Shannon’s theory of com-
munication, Wiener’s cybernetics or Turing’s Artificial intelligence
thoughts that structured a theoretical corpus for the computer sci-
ence studies. But, now, as computers (its hardware and software)
are surrounding us and we keep on living in this continuous
research on automation of mental processes, we can see how this
research progressively constitutes a particular mental model that
structures a range of possible actions within each particular soft-
ware and hardware’s functionalities. As it happens with comput-
ers, software assumes also a conception of communication, memo-
ry, cognition or intelligence confronted in dialogue with our own
human capacities.

We are impelled to philosophical questions related to these concep-
tions hidden inside computers as they become a cultural artefact
that affects us and influence the way we experience and explain
the world we live in. As Mathew Fuller explains “software con-
structs ways of seeing, knowing and doing in the world that at
once contain a model of that part of the world it ostensibly per-
tains to and that also shape it every time it is used.”2 So it’s
becoming true that machines are capable of truth as we let them
conform our conceptions of the human by experiencing it as “nat-
ural”, through their/our way of structuring actions experienced as

soft ware: social perspective

81

“natural”, as if they could not be in another way. And as Inke Arns
says too, “now that we are getting increasingly mediatized and
digitized it becomes more and more important to be aware that
code or software directly affects the virtual and actual spaces in
which we are moving, communicating and living.”3

We could then remember what Walter Benjamin wrote about the cin-
ema back in 1936 and apply it to the software surrounding us.
Benjamin said: “the cinema corresponds to deep modifications of
the perceptive apparatus, modifications that now all passer-by lives
at a private level in the traffic of a big metropolis, as any citizen of
a contemporary state.”4 It would not be exaggerated to substitute
“cinema” with “software” that rules what’s behind the interfaces
created to “solve” the human-computer interaction problem.
And it would be wise to let us get deeper into computer’s ontology
of operations that will lead us to the algorithm structures.

Now we are becoming aware of research projects developing bio-
inspired hardware devices, capable to merge software dynamism
with hardware execution, as for example the POEtics project5. But
commonly we still have to understand this separation between
hardware (the machine itself) and software (the instructions of
the machines that lent them dynamism). To accomplish
a task, a computer must perform a detailed sequence of operations
that are indicated by an algorithm in terms of finite list of instruc-
tions, expressed by a finite number of symbols.

These instructions could be integrated at the logical level of the
machine through machine code, which is really difficult to do by
programming tasks with just strings of 0 and 1. So that is why
there are programming languages that make it easy to write good
algorithm for a computing system. There are different levels of
representation inside the computers: there is the physical system
(a structure of integrated circuits), the logical system (the inter-
pretation of high/low voltage as 1/0), the abstract system (patterns
of 0/1may represent alphanumeric characters, commands may
stand for whole sets of logical instructions), and conceptual system
(software applications programmed with programming lan-

pau david alsina gonzalez

82

guages). So software is written using programming languages that
in the end must result interpretable by the machine code at the
logical system level which must correspond to physical patterns
interpretable by the physical system at the physical level .6

So the algorithm analyzes problems and finds a method to solve
them, establish a definite list of operations to do and its order of
execution. Therefore the objective of an algorithm is to synthesize
a task, calculus or mechanism before it is transcribed into the com-
puter. So then the programming languages codify the algorithms in
a computer understandable language, but as you know there are
different programming languages and most of them are high level,
which means that are languages closest to human understanding
(C, PASCAL, PROLOG, BASIC, FORTRAN, LISP), as opposed to the
low level languages that are closer to machine understanding
(assembly languages). Computer instructions are then vital as com-
puter’s operations are invoked by internal instructions that are
unintentionally triggered by external inputs.

Each language is designed for different uses, and makes possible some
actions better than the others. This is related with the “non trans-
parency of the code” idea, that we could draw a parallelism with
the “whorf-sapir” hypothesis that says that human thinking is
determined by the code of natural language: the speakers of dif-
ferent natural languages perceive and think about the world dif-
ferently 7. So there are programming languages for business, for
artificial intelligence for kids, for commercial applications or even
maybe could be programming languages for art making. As Casey
Reas noticed in Ars Electronica, when Computer programs exe-
cute they are dynamic processes rather than static texts on the
screen. Core expressions of software — including dynamic form,
gesture, behaviour, simulation, self-organization, and adaptation —
emerge from these processes.

Each programming language has a material with unique affordances
and constraints, each has differences and distinct aesthetic
gestalts. And from an attempt to build a new programming lan-
guage for new creative uses capable of unique visual expressions

soft ware: social perspective

83

emerged the “Processing” experience,8 which makes us think
about the relation between art and the possibility of artistic pro-
gramming languages to be created. Those new programming lan-
guages make possible easier programming tasks in order to
accomplish brighter visualisations, but we could also think that
maybe what is behind the creation of a programming language for
artistic creation is the assumption of a conception of art as the
consecution of beauty, a conception of art from back in the XVIII
century before Schiller and Lessing’s thoughts, or even as manual
capacities as we could find them in the old greek word “techne,”
that referred to the creativity of applied arts, far from the notion
of art as creation directly involved with social changes, right into
its search for modernity.

As Cramer says a conception of art as only what is tactile, audible and
visible, take us back to the romanticist philosophy and the privi-
leging of aisthesis (perception) over poeisis (construction)9. So
once Software art collides with computer culture and art culture
both at the same time, different uses of the term art appear living
together. In computer culture there is this notion of art as arti-
sanship closer to Donald E. Knuth’s “Art of computer program-
ming” and the beauty of the code, which is totally different from
the one being used in contemporary art circles. As Andreas
Broeckman says, we might need a strong notion of what consti-
tutes art, which could be defined as he explains as “art as about
the transgression of boundaries, about making familiar experi-
ences strange, about dramatising what pretends to be innocent,
and about exploring the virtualities, the potentialities of tech-
nologies and human relationships.”10

Therefore it would be meaningful what Christa Sommerer says about
the properties of a digital artist, quality that lies in the sensitivity
to create new visions and explore new tools and structures that
support these visions and finally present us with content and
experiences that transcend time and material by touching deeper
emotional qualities that are not readily explained through code or

pau david alsina gonzalez

84

numbers alone .11 But of course in order to do that a deeper
knowledge of computer internal hardware architecture, its
resources and infrastructure could help to become less dependent
on pre-defined limitations. The key point is to evaluate technical
possibilities of software and hardware and explore new technical
and intellectual ideas, not the other way as an instrumental ver-
sion of spiritual compensations for technological brutality of the
everyday, as Geert Lovink wrote.12

Anyway, throughout all digital art scene it seems to be a constant
mixture and confusion between art and applied arts, and maybe
some will claim this distinction may seem irrelevant nowadays,
but the objectives of each one of the conceptions of art involves
quite different political implications and approximations to tech-
nology, one as a constructive critique the other one many times as
a playful use of technology considered as an affirmation without
any kind of social critique. So this distinction matters because as
the different main categories of software (operating systems, utili-
ties and applications) with their pre-defined algorithms structure
and pre-configure our relationship with the information, they also
establish a range of possibilities of thought, perception and
knowledge within the life-with-computers in the so called
“Digital revolution”.

This is why a computer’s ontology and its deconstruction through art
and philosophical practice are needed in order to evoke the
“essence” hidden inside cultural reflections on software, their con-
trol structures living behind. Software art allow us to do critical
reflection of software and its cultural impact, and encourage us to
create new algorithms, new sources codes, new programs with
new results that could make us able to experience other relation-
ships, new possibilities to manage data, experience reality and
explain the world to ourselves.

Through art practice we could be located on the level of the source
code, on the level of abstract algorithms or on the level of the
result generated by a certain program code, as Rob Myers said on

soft ware: social perspective

85

the PD-List13. Each of the levels involves different conceptions
of art practice and different possibilities of action. Of course we
could look at software art as a sophisticated evolution of the
“demo” scene, being at the risk of getting incorporated in the next
version of Photoshop as a new filter, or the evolution of those
fractal experimentations as an art and mathematics approximation
to “the beauty of truth”, or a brief social commentary to the main
commercial software applications that are surrounding us.

But this deep political and aesthetical implications behind the selec-
tion and creation of algorithms and the software’s functionalities,
behind Google algorithms, military purpose software applications,
users conceptions prefiguring software design or holistic user pro-
file databases should aware us seriously and encourage us to take
part in its creation, to understand its implications, to observe their
development and to throw away its assumed innocence.
Algorithms are the core of programmes, but we can also find
algorithms everywhere, algorithms in the washing machine,
in a music score, in a book of cooking receipts. An algorithm is
a defined set of instructions in order to solve a problem, so once
its invented in order to accomplish a task then, supposedly, we do
not need to understand its principles, to understand why it works,
and we just have to follow its instructions because the intelligence
required to do the task it’s already codified in the algorithm.

Of course we say “supposedly” because algorithms, those finite list of
instructions set in order to solve a problem, are not as “natural” as
they seem to be once codified, and, for example, if we type in
a keyword in Google’s search bar we get a result that could also
make us say that there could be different ways to execute this
finite list of instructions, and there could be different variables
that could help us to identify the key elements of a problem.
Google’s search engine defines the way in which millions of peo-
ple find information online, so google’s page rank algorithm
structures the world on line. Therefore if we turn them upside
down algorithms could be considered as tactical media tools, as

pau david alsina gonzalez

86

Amy Alexander pointed out,14 structuring actions in another way,
for another possible actions in order to solve “other problems” to
be considered.

As Gilles Deleuze showed us in his philosophy of cinema,15 which is
also an ontology of the present, we have been trained to read
movies and now we are totally able to understand the language of
cinema as we have been constructing it through practice, with the
meaning of a close shoot, a mid shoot, travelling, etc. As Deleuze
drew a taxonomy of images that allowed us to construct mean-
ings within the context of cinema, and reconstructed this careful
eye and mind instruction history that expresses the way we have
developed our particular way of seeing the world and experience
it, now we could start to draw new taxonomies that would show
us that we have also been progressively trained to read the opera-
tions of software and construct the meaning that allow us to
understand and build knowledge through the “universal cut and
paste options”, or the myriad of filters and menus and options
waiting to be happily selected.

But “learning to read images” has little or nothing to do with “learn-
ing to act with software” and we do need different traditions to
help us understand this software culture getting over the media
culture already shocking us. As Lev Manovich stated in the
introduction of “ the language of new media,”16 he tried to build
this ontology of new media as a study of the operations involved
in its development, but finally he mixed up computer’s ontology
with media’s ontology and got more involved in graphical user
interfaces than in software and source code structuring actions.
We have learned how to comment still images through art histo-
ry tradition, we then have learned how to comment and read
moving images through cinema studies and film theory, but as
images are being digitalized (or “numerique” in French) and they
can be calculated, and therefore generated, then we have also to
learn from the computer science studies. From Media studies we
move into software studies; to understand the logic of the new

soft ware: social perspective

87

media we need to turn to computer science and merge different
approaches. But after all, is it the computer a media? Or better,
is it just a media? Florian Cramer says that computers are not just
a media because computers are not just in between sender and
receiver but they are senders and receivers which themselves are
capable of writing and reading, interpreting and composing mes-
sages within the limitations of the rule sets inscribed into them.17

So once the computer becomes more than a media, more than a dis-
tributor and an assistant and starts being used as a generator itself,
everything changes and the software becomes meaningful as a key
point in our technological culture. We could then search for the
origins of art category that expresses this subject and then estab-
lish how the term Software art appeared in the digital art scene
during the Transmediale 2001 festival in a panel named “Software
Art”, as it is usually quoted in many places. The questions raised
there were quite significant and still are waiting for responses, as
for example the question about the meaning of art within the
software code programming, the relation between creativity and
computers, the differentiation between conceptions of art and
artisanship, etc... But those questions are not new and we can look
back into the history of art and recall the computer artists, the
algorists,18 the Burnham’s “Software” exhibition,19 the early days of
art and mathematics ,20 the relation between computer art and
conceptual art, even those analogue questions arisen from the
poetry field as Cramer suggests.

Many of those questions remind us the early questions brought up by
computer art pioneers practices decades ago, when the computer
was in the previous graphical user interface period waiting to
spread all over the world as a personal computer ready to establish
the office metaphor as the only one capable of allowing direct
communication with the machine. Now we are so highly influ-
enced by this metaphor that it’s really hard to think behind the
GUI itself. We are so embedded within their premises that we
cannot see them at all as premises, as if they were as natural as the
laws of physics and not changeable at all.

pau david alsina gonzalez

The early computer artists knew they had to get deep into the code
in order to do their algorisms, they had no other chance and no
Photoshop available for them. The early Digital Aesthetics theo-
reticians had a big problem trying to fit them into an art catego-
ry, but now all culture passes through computer and its software.
We look at the world and build knowledge through windows,
databases, browsers, etc... Software is embedded in social prac-
tices because there is a cultural dimension of culture as a hetero-
geneous social field in which software gets built and used, in
which it operates and in which it gets developed, as Mathew
Fuller argues.21 The difference between those early “algorists”
as Roman Verotsko or Ken Musgrave or “computer artists” as
Harold Cohen which are focused on developing programs to
generate their work is that in software art software itself is the
artwork and what is important is the process generated, not the
results of the computer and the output generated as happens
with the works executed on paper with plotters and so on.

So once processuality is embedding art, and we are
getting over the image culture to get back to this brand new
text culture where the execution expresses those dynamic

processes evolving from their algorithms structuring its actions,
we need to think about the deep relation between ontology,

politics and aesthetics within those algorithms that lead
us to software art practices, and the importance to

open those black boxes behind the surface
effects of images and audio

surrounding
us
.

89

1 Sales, Ton. (1998) “La informàtica moderna, hereva intellectual directa
del pensament de Llull”, Studia Lulliana 38 , pp.51–61.

2 Fuller, Matthew.(2003) Behind the Blip. New York: Autonomedia
3 Arns, Inke.(2004) Read_me, run_me, execute_me: some notes about

software art. Lecture at Kuda, Novi Sad.
4 Benjamin, Walter. (1987) Discursos Ininterrumpidos I. Madrid: Taurus
5 For example the goal of POEtic project is the development of a novel

digital electronic circuit, a flexible computational substrate or artificial
tissue, capable of integrating the three biological models of self-organi-
zation: phylogenesis (P), ontogenesis (O), and epigenesist (E). This tis-
sue will be the essential substrate for the creation of POE-based
machines, capable of evolution, growth, self-repair, self-replication, and
learning. http://www.poetictissue.org/

6 Floridi, Luciano. (1999) Philosophy of Computing. New York: Routledge
7 Manovich, Lev. (2000) The Language of New Media Cambridge:

MIT Press p.64
8 Reas, Casey. (2003) Ars Electronica Catalogue. Programming Media.

Hatje Cantz Verlag
9 Cramer, Florian.(2002) read_me 1.2 catalogue: Concepts. Notations.

Software. Art.
10 Broeckman, Andreas.(2003) On Software, Art and Culture. Nettime

Mailing List (25/09/03)
11 Sommerer Christa. Mignonneau, Laurent (2003) Ars Electronica

Catalogue: From the Poesy of Programming to Research as an Art Form.
Hatje Cantz Verlag

90

12 Lovink, Geert. (2002) Dark Fiber. Tracking Critical Internet Culture.
Boston: MIT Press.

13 quoted in Arns, Inke.(2004) Read_me, run_me, execute_me: some notes
about software art. Lecture at Kuda, Novi Sad.

14 Goriunova, Olga. Shulgin, Alexei. Quickview on Software Art.
Interview with Amy Alexander, Florian Cramer, Matthew Fuller, etc..

15 Deleuze, Gilles.(1983) L’image-mouvement.Cinema I. Paris :
Les Editions de Minuit.
Deleuze, Gilles. (1985) L’image-temps.Cinema 2. Paris :
Les Editions de Minuit.

16 Manovich, Lev.(2001)The Language of New Media. Cambridge:
MIT Press

17 Cramer, Florian.(2002) read_me 1.2 catalogue: Concepts. Notations.
Software. Art. http://userpage.fu-berlin.de/~cantsin

18 More information about the algorists at
http://www.verostko.com/algorist.html

19 In 1970 Jack Burnham organized and exhibition named “Software —
Information Technology: Its New Meaning for Art” , which took place
at the Jewish Museum in New York;

20 Emmer, Michele (1993) The Visual Mind. Cambridge: MIT Press
21 Fuller, Matthew.(2003) Behind the Blip. New York: Autonomedia

