
M I S E E N A B Y M E

I N S O F T WA R E A R T:

A C O M M E N T T O

F L O R I A N

C R A

M E

R

1. The “No Future” of Software Art
The concept of mise en abyme seems particularly pertinent if we
are to capture a dominant wing in software art—and in some
respect software art in general; pertinent that is not only in terms
of analyzing the formal level of singular art works but also when
considering their underlying artistic strategies.

In comparative literature, the use of the literary trope of mise en abyme
has tended towards the Symbolist tradition of experimental fic-
tion, where the limits of language are tested in an extreme self-
reflexivity closed off from the reference function of language. In
the study of narrative and visual representation in general, the
concept has thus become emblematic for the instability or fragility
of representation, for example by thematizing the perishable or
transitory character of the material of expression (e.g. the paper of
a book, writing in the sand, etc.), an erratic structure of enuncia-
tion (e.g. an insane narrator, as in Poe, or a narrator who turns the
levels of fiction and reality reference upside down, as in Borges),
or that the epic depiction of a human being which eventually
turns out to be staged before the audience as if in a game
(e.g. Peter Weirs film “The Truman Show, USA, 1998.)

The use of the literary trope of mise en abyme thus characterizes art’s
exploration of representational problems of one’s means of expres-
sion or of language in general; in software art the exploration of
representational problems in computer media. What seems impor-
tant to at least one wing in software art is to thematize that the
computer is a tool and not a medium; that the idea of the computer

1 5 1

T R O E L S D E G N J O H A N S S O N

Draw a straight line and follow it.1

troels degn johansson

1 52

medium being a transparent vehicle for the expression of other,
culturally established media (“the book” as in word processing soft-
ware or text displaying software, “cinema” as in media players, etc.)
is based on a representational “repression” of the level of software,
program code, which of course is necessary for the computer medi-
um to function at all. Accordingly, software art has concentrated
on the software itself as a tool and not primarily as a means of
expression of something else. Hence the fundamental self-reflexiv-
ity in software art; a self-reflexivity which echoes the heritage of
deconstructivism and the criticism of ideology in philosophy
(Derrida2 , Althusser) and media theory (Baudry, Ulmer, etc.), in
which the medium is similarly scrutinized as for the technological
foundation of presence, transparency, and “reality effects”
(Barthes), and where the figure of the mise en abyme, in Greg
Ulmer’s terms, is referred to as a ‘reflexive structuration, by means
of which a text shows what it is telling, does what it says, displays
its own making, reflects its own action.’ (1991) In other words,
a rhetorical figure which characterizes a critical discourse where
the criticism is manifest as a theme as well as an immanent prin-
ciple of the rhetorical strategy.

In his contribution to the Read_Me Festival 2002, Florian Cramer
made a plausible distinction between two wings in software art,
namely “software formalism” and “software culturalism”. Whereas
software formalism consists in exploring the formal beauty of
software as an artistic material in its own rights, “software cul-
turalism” approaches software as a “cultural, politically coded
construct”; an otherwise transparent construct that the artist
should make visible, manipulate/tweak, destroy, and/or apply
for other purposes than originally intended in order to make
manifest its importance to the medium and to culture. To
Cramer, the two wings are represented by two “semi-coherent
London-based groups” respectively; the culturalists around
Matthew Fuller, Graham Harwood, I/O/D, and Mongrel
(“Web-Stalker”), and the formalists around artists such as
Adrian Ward (“Auto-Illustrator”), Alex Mclean

historical and cultural contexts

1 53

(“forkbomb.pl”), the mailing-list based community “eu-gene”,
and the DorkBot “salon” but also predecessors such as Donald
E. Knuth with his “The Art of Computer Programming” and
Stephen Levy with his so-called hacker-credo that “You can
create art and beauty with computers”.

The self-reflexivity of software art referred to above may be said to
characterize both wings in as much as they are both preoccupied
primarily with the program code itself rather than with the
effects that it may bring about in a graphic user interface when
executed on a computer. However, as I shall seek to demonstrate
below, the figure of the mise en abyme seems especially charac-
teristic of the software culturalism since this wing concentrates
on the emergence of code in otherwise transparent graphic user-
interfaces meant for entertainment, the solving of tasks, etc. In
this manner, one may say that software culturalism has a general
problem with representation in the sense that it seeks to make
manifest the underlying code that a rendered graphic user inter-
face is based on. Still, as I will also argue, one may find a similar
pattern in the formalist camp; a finding that may indicate that
the two wings are not absolutely torn on this matter.

However, as a headline for the strategical dimension of software art,
the application of the concept of “mise en abyme” may also give
an indication of software art’s current state of affairs; that soft-
ware art in a certain sense has come to a dead end, a cul de sac,
an abyss. Having made his distinction between the two wings of
software art, Cramer also ended up by pointing at what we may
designate as software art’s general aporia: That none of the two
wings seem particularly promising as separate projects, that is
without reference to the other, and that even together it is not
obvious whether there is any hope for further progress…
Contrary to a general trend in contemporary art, in which art
is dedicated to the exploration of opportunities and strategies,
Cramer rather seems to announce a “no future” of software art;
except that is for the histories of software art which ‘still remain
to be written.’ (p.7)

troels degn johansson

1 54

For Cramer, the software formalism is important since it sets off
from the recognition that ‘software art could be generally defined
as an art of which the material is formal instruction code.’
However, in the same moment, Cramer admits that if software art
were simply to be reduced to this project, “one would risk ending
up with a neo-classicist understanding of software art as beautiful
and elegant code”. For Cramer, it is thus ‘telling that hackers, oth-
erwise an avant-garde of a broad cultural understanding of digital
technology, rehash a late-18th century classicist notion of art as
beauty, rewriting it into a concept of digital art as inner beauty
and elegance of code.’ (p. 6) Software formalism may thus be said
to be “beautiful”, but “not interesting” when seen as a wing of
contemporary art, “not interesting” that is in the Kierkegaardean
sense since it does not give rise to critical questions, reflections,
and enlightenment ouside of its own field in the fashion that
modern art is supposed to do, incl. the major formalist and mini-
malist traditions. To Cramer, software formalism represents an
“aesthetic conservatism” which is ‘widespread in engineering and
hard-science cultures; fractal graphics are just one example of
Neo-Pythagorean kitch they promote.’3

On the other hand, reduced to “software culturalism” software art
‘could end up being a critical footnote to Microsoft desktop com-
puting, potentially overlooking its speculative potential at formal
experimentation.’ Software culturalism may thus be said to be
“interesting” in the sense evoked just above and hence in a more
profound sense avant-gardistic but as such lacking what one may
call a “lasting perspective”, in that its main difficulty is to take
things further than to comment on the established formats in
computer mediated communication. Software culturalism would
have taken things further if it sought to made out an alternative to
these formats, as one would expect from a true avant-garde proj-
ect—if we by this term understand a project whose purpose it is
“to make Art serve Life” in the “Name of Art” but in the same
moment by annihilating art as a separate institution.4

historical and cultural contexts

1 5 5

2. The “Nature” of Software Art: Abysmal Concepts
In his essay, Florian Cramer presents a convincing argument for
the nature and necessity of software art. Software art, Cramer
argues, is dedicated to the exploration of the algorithmic program
codes, not the code’s transparent expression in a computer-mediat-
ed presentation; say a graphic user interface, a media player, etc.

Cramer’s paper may be said to be an essentialist defence of software
art in the sense that it is its ambition to demonstrate that software
art exists in terms of being software. On the other hand, however,
his essentialist approach also tends to undermine his defence of
software art as an artistic project since implicitly he points at
something which both may be characterized as its ultimate com-
pletion and its finalization, its end.

As stated previously, software art to Cramer is art that brings software
itself to the fore rather than the effect that it may produce. As Cra-
mer notes initially, this project is much overlooked in art and digital
aesthetics, and Cramer is probably right when he states that the

history of the digital and computer-aided arts could be told as a history of
ignorance against programming and programmers. Computer programs
get locked into black boxes, and programmers are frequently considered to
be mere factota, coding slaves who execute other artist’s concepts.

Cramer’s thesis is echoed in what Mary Flanagan has heralded as the
“bible of electronic art”, namely Margot Lovejoy’s Digital Currents:
Art in the Electronic Age; a work which is only marginally interested
in experiments on the level of program code and which rarely
credits the programmers who have been involved in the develop-
ment of the generous number of art works that Lovejoy includes in
her presentation. We may thus take Lovejoy as an example of what
Cramer refers to as the “romanticist philosophy” that is underlying
much treatment of electronic art; a treatment which may be char-
acterised by its ‘privileging of aesthesis (perception) over poiesis
(construction), cheapened into a restrained concept of art as only
that what is tactile, audible and visible.’5

troels degn johansson

1 56

To Cramer,
software art exists and operates on an immaterial, entirely conceptual
level, that is, what he sees as the level of software as such. Cramer
defends this position firstly by arguing that software may be read and
executed entirely as a mental act (‘as it was common before computers
were invented’…), and that software thus exists without a computer.
Doing so, he successfully counterargues Friedrich Kittler’s claim that
software does not exist without the hardware that it runs on, that is,
that software and hardware are inconceivable without each other.6

Secondly, Cramer points at what he takes for software art’s essential
affiliation to minimalist concept art. To Cramer,

Concept art as an art “of which the material is ‘concepts,’ as the mate-
rial of for ex. Music is sound” (Henry Flynt’s definition from
1961)7 and software art as an art whose material is formal instruc-
tion code seem to have at least two things in common:
1. the collapsing of concept notation and execution into one piece;
2. the use of language; instructions in software art, concepts in concept
art. Flynt observes: “Since ‘concepts’ are closely bound up with lan-
guage, concept art is a kind of art of which the material is language”’

The collapse of the differentiation between concept notation and execu-
tion is an important theme in the tradition of concept art that
Cramer refers to in his 2002 Read_Me paper. His “favourite exam-
ple”, i.e. La Monte Young’s piece “Composition 1961”, which is made
out by a piece of paper with the instruction, ‘Draw a straight line and
follow it’, demonstrates this collapse in a beautiful fashion by instruct-
ing the reader to initiate the execution of an open-ended program
and thus emphasizing ironically the impossility of performing the
instruction physically while one may actually imagine oneself doing it.

Cramer’s example not only clarifies what he takes for the “collapse of
concept notation and execution”; it also captures the abysmal char-
acter of software art in his conception. La Monte Young’s piece is
a fine example of mise en abyme. Whereas it is true that in it self
the text may not “show what it is telling, or do what it says”, etc.,
as Ulmer has it. However, it does assume this character by its

historical and cultural contexts

1 57

“computation”, that is when one initiate the execution of its
instruction—and obviously when one realizes its cool irony. The
imagined, eternal execution of the open-ended instruction program
thus perfectly simulates the visual realization of the mise en abyme,
say by the feed-back loops of a monitor that present the filmed live
image of itself, or by watching the halo of oneself ’s mirror reflex-
ions of one’s mirror image when placed between two large parallel
mirrors. The particular use of language becoming a common
denominator of concept and software art precisely makes out
experiments with the “limits of language” and closes off the ordi-
nary reference function of language in favour of self-reflexivity.

La Monte Young’s piece becomes emblematic for what we may des-
ignate as Cramer’s abysmal concept of software art. Cramer not
only sees software art as being subordinated concept art: ‘Since
formal instructions are a subset of conceptual notations, software
art is, formally, a subset of conceptual art’; he also happens to
point at a distinct piece of concept art in order to demonstrate the
ideal realization and thus ultimately the finalization of software
art as an artistic program. In other words, by instructing the soft-
ware artist to execute mentally La Monte Young instruction pro-
gram he makes the clearest of demonstrations of what software
art is, but he also seems to exhaust the possibilities of software art
as an artistic program. Cramer himself concludes that

Concept art potentially means terror of the concept, software art terror
of the algorithm; a terror grounded in the simultaneity of minimalist
concept notation and totalitarian execution, helped by the fact that soft-
ware collapses the concept notation and execution in the single medium
of instruction code.—Sade’s “120 days of Sodom” could be read as a
recursive programming of excess and ts simultaneous reflection in the
medium of prose.The popularity of spamming and denial-of-service
code in the contemporary digital arts is another proof of the perverse
double-bind between between software minimalism and self-inflation;
the software art pieces awarded at the transmediale.02 festival, “tran-
cenoizer” and “forkbomb.pl” also belong to this category.

troels degn johansson

Obviously potentiality here does not mean risk but but little
more than realizing the ultimate consequences of the argumenta-

tion and indeed the nature of the material that software art
is devoted to. Whereas “120 Days of Sodom” may be could
be read as a recursive programming of excess, software art

could inversely be read as a programmed excessive
reiteration of transgression; that is as a charicature

of “120 Days …” After Cramer, software art
seems to have little to do but to repeat the

point; to follow the straight
line that they have

drawn
.

1 59

1 La Monte Young, “Composition 1961”, quoted from Cramer 2002.
2 Derrida who has frequently made use of and referred to the rhetorical

figure of the mise en abyme in his own philosophical writing.
3 I think that Cramer is too general in his characterization of the formal-

ist wing at this point: The artists of the “software formalism” camp cap-
tures in my view a much broader range of approaches to art than the
ones described.

4 Hence Peter Bürger’s definition of the historical, never fully realized
avant-garde. (Bürger 1974: 73 ff.)

5 Hence Lovejoy’s understanding of “electronic image-production”, which
to her is ‘immaterial, existing only as an image structure or accumulation
of data, without physical substance. It does not lead necessarily to the pro-
duction of a material art object unless the artist makes a conscious deci-
sion to translate it into one that can maintain a physical presence with a
particular dimensional level within a perceptual field.’ (Lovejoy: 159)

6 Cramer refers here to Kittler (1991).
7 Cramer refers here to Flynt (1963).

Literature:
1. Baudry, Jean-Louis. 1986 (1970). “Ideological Effects of the Basic

Cinematographic Apparatus.” In Philip Rosen (Ed.) Narrative,

Apparatus, Ideology. New York: Columbia University Press.
2. Bürger, Peter. 1974. Theorie der Avantgarde. Berlin: Suhrkamp XXX
3. Cramer, Florian. 2002. ‘Concepts, Notations, Software, Art.’

Paper for the Read_Me Festival, 2002.
4. Flynt, Henry. 1963 (1961). ‘Concept Art.’ In La Monte Young and

Jackson MacLow, Eds.: An Anthology: Young and MacLow.
5. Kittler, Friedrich. 1991. ‘There Is No Software.’ Observed at

http://textz.gnutenberg.net/textz/
kittler_friedrich_there_is_no_software.txt on May 25th, 2004.

6. Lovejoy, Margot. 2004 (1989). Digital Currents: Art in the Elelctronic
Age. London and New York: Routledge/Taylor & Francis.

7. Ulmer, Greg. 1991. ‘Grammatology Hypermedia.’ Postmodern Culture,

Vol. 1. No. 2. Observed on http://jefferson.village.virginia.edu/pmc/
text-only/issue.191/ulmer.191

