
C O D I N G P R A X I S :

R E C O N S I D E R I N G

T H E A E S T H E T I C S

O F C O D E

161geoff cox, alex mclean, adrian ward

I n ‘reconsidering the aesthetics of code’, we hope to reflect upon an
earlier essay,1 and to extend its remit in understanding code as per-
formative: that which both performs and is performed.

The previous paper ‘The Aesthetics of Generative Code’ (2000) drew
an analogy between poetry and code. Appreciation of poetry may
come from reading or experiencing a live spoken performance.
Similarly, code may have aesthetic value in both its written form
and its execution.The paper argued that any separation of code
and the resultant actions would simply limit the aesthetic experi-
ence (otherwise based purely on the sense apparatus), and ulti-
mately limit the study of these ‘generative’ forms (that should also
engage with the technical apparatus itself). Speech and its repre-
sentation in writing together form a language that we appreciate as
poetry. In the essay we speculated whether code could be seen to
work in a similar way?

Put simply, this emphasises that art-orientated programming needs to
acknowledge the conditions of its own making —its poesis.This
requires both a technical and cultural impulse reflecting current
thinking in the critical discourse around ‘software art’. For
instance, it has become a truism to emphasise that code is not
merely functional but can have poetic qualities, and political sig-
nificance. Florian Cramer, amongst others, provides many exam-
ples of poetic approaches to programming: from dada poetry to the
conceptual art tradition, from perl poetry, code slang, ‘viral script-
ing, in-code recursions and ironies’.2 This is nothing new as he

G E O F F C OX , A L E X M C L E A N ,

A D R I A N WA R D

162

acknowledges. Back in 1981 Donald Knuth pointed to the added
value of programming as not merely ‘economically and scientifically
rewarding, but also […] an aesthetic experience much like compos-
ing poetry or music’.3 In such examples, the code is the material —
most clearly likened to the materiality of language —leading to the
idea of software as potential literature.4 In this formulation, the
formal qualities of code cannot be separated from its broader dis-
cursive framework.

reconsidering the terms
This paper aims to address these ideas in the light of our current
thinking and practice. Clearly, in writing any essay, like writing code,
a properly critical approach should not simply fix data and ideas.
History is inherently unstable, contradictory, dynamic and dialecti-
cal, and therefore any essay or piece of code is only ever a work in
progress and should be subject to active criticism and upgrade.

Even the title itself, ‘the aesthetics of generative code’, needs qualifica-
tion. One way of approaching a term like ‘generative code’ is from
‘generative grammar’, a linguistic theory proposed by Noam
Chomsky (in Syntactic Structures, 1972) to refer to deep-seated
rules by which language operates.5 In keeping with this, much
recent generative work has been concerned with the linguistic
qualities of code work (sometimes called ‘code literature’ or ‘code
poetry’).This linguistic approach would seem suitable for us too in
emphasising that linguistics needs an abstract system demonstrat-
ing competence (‘langue’), that generates the concrete event or
performance (‘parole’, to use Saussure’s terms). Furthermore, all
conventions of writing and reading (even of code) can be said to be
part of a set of abstract (coded) systems by which outputs are gen-
erated and understood. According to this way of thinking, it is as
if the text is relatively autonomous from the act of writing —as if
writing writes rather than writers. Evidently, if writing can be seen
to be autonomous, it can also be seen to be self-organising or gen-
erative. For instance, Calvino’s ‘How I Wrote One of My Books’
referred to his popular book If on a Winter’s Night a Traveller.6

historical and cultural contexts

163

It reads like a mathematical formula, as an algorithmic description
of the book’s structure —and with this in mind, the subtitle of our
previous essay was: ‘how I wrote one of my perl scripts’. Codes are
essentially closed systems of semiotic elements —like all language
codes.The texts which are formulated in these languages (or pro-
grams) are ‘performative strings of signifiers.’7

what is code?
Code often begins as a vague idea of its final form. In its infancy,
the process of breaking down the finished product into creatable
parts produces new parts, ideas and directions that shape the final
form often in some new and unexpected way. Amongst the many
techniques for writing software, applying a conceptual framework
to the product helps to define the constituent parts.Traditionally,
flow charts help to visualise the procedural flow of code. Object-
orientated design is a more contemporary approach to rendering
the entire product into manageable components. At all times, the
programmer retains an overall understanding of the product but
can concentrate on the details using these techniques. Perhaps the
similarity here to how a piece of music may be constructed is useful
in that themes and elements are developed and brought together
in order to build a coherent whole —although this analogy may be
too simple. Does the composer always imagine their finished piece
before it exists? Does the programmer always know the desired
result before they launch Emacs?

What this paper suggests is that creative production (whether it be
code, or music) is performative, where the potential for change is
very much active and dynamic. Mistakes are made, which them-
selves may lead to further possibilities. Even when the product is
commercially-driven and the goals are very much predetermined,
the techniques invoked are not prescribed.The programmer is
constantly learning new techniques.This however, does not deny
the importance of theoretical activity —in fact, it is the very pres-
ence of theory that makes the practice applicable.

geoff cox, alex mclean, adrian ward

164

how does code run?
In the previous paper, we described code as a notation of an inter-
nal structure that the computer is executing, expressing ideas,
logic, and decisions that operate as an extension of the program-
mer’s intentions.The written form is merely a computer-readable
notation of logic, and is a representation of this process. Yet the
written code isn’t what the computer really executes, since there
are many levels of interpreting and compiling and linking taking
place. Code is only really understandable within the context of its
overall structure —which is what makes it like a language (be it
source code or machine code, or even raw bytes).To appreciate this
fully we need to ‘perceive’ the code to grasp what it is we are expe-
riencing and to build an understanding of the code’s actions.

Once authored, code is executed. In technical terms, the processor is
obeying the instructions given to it and generating activity by
deploying automation. In many ways, it is easy to see this step as
a solidification of the creative process since the hand of the author
is not physically felt. But software itself relies on the deferred action
of its author —the code operates on behalf of the programmer, so it
is more accurate to consider this as part of a continuing perform-
ance.This is especially obvious when interaction exists between the
software and a user, and even more so when the coder is the user.
Even in business terminology, software performs. However, it is
important to recognise that the actions of a piece of code consist of
a great deal more than a translation of the intentions of its author.
The code is interacting with the user, itself, its environment, and
the systems it has access to via the many multi-layered and mediat-
ed interfaces that are available to it.The Operating System defines
potential activities via APIs, the hardware defines potential func-
tions via machine code, and yet these are implicit and mostly
unseen.The performance is thus the result of many components,
from a wide range of sources, interacting dynamically. Many of the
components are predetermined, but through the combinations of
interactions combined with the dynamism and unpredictability of
live action, the result is far from fixed as a whole.

historical and cultural contexts

165

The following example illustrates the turmoil of the environment in
which code executes.This simple program, called hot_air_bal-
loon.pl, burns system resources whenever system load falls below
a certain level. It both reacts to and changes the environment in
which it runs. All programs share this two-way relationship with
the systems they inhabit. All programs load the systems they run
within, and demands made by programs cannot always be served
by the operating system in which memory capacity and processing
cycles are limited.

#!/usr/bin/perl

while (1) {

open(FH, </proc/loadavg) or return;

my ($load_average) = <FH> =~ /([\d\.]+)/;

close FH;

if ($load_average < 0.5) {

my @foo = sort map {rand} (1 .. 1_000_000);

}

sleep(1);

}

formalist reception
This paper so far describes an approach that runs counter to the ten-
dency to hide the code that lies behind the work. Cramer laments
how in much interactive art, the impression is that the viewer makes
the work somehow through ‘interaction’ rather than the complex
interactions of processes and code running on the computer behind
the scenes —demonstrating both an ignorance of programming and
of course of programmers.8 In the previous paper, this was partly our
intention to highlight these relatively hidden aesthetic pleasures of
code and coding. Since publication, however, this has been generally
received as indicative of an over-concentration of formal concerns at
the expense of cultural or social implications. In ‘Concepts,
Notations, Software, Art’, Cramer refers to this as ‘software formal-
ism’, as distinct from ‘software culturalism’ to characterise what he

geoff cox, alex mclean, adrian ward

166

saw at that time as two distinct tendencies.9 Following this, Erkki
Huhtamo is interested too in what he calls ‘software art purists’ that
emphasise the primacy of code as the main artistic material.
Huhtamo sees the software art movement as a continuation of a
neo-modernist project: ‘emphasizing the centrality of the code and
the algorithmic approach […] positing a “hard core” often felt to be
lost in the postmodern world’. In this connection our earlier essay is
seen to ‘fulfill many of the criteria for classical avant-garde move-
ments’ as distinct from culturalist approaches that do not fit so easily
in the ‘modernist straitjacket’10—an expression of conceptual mad-
ness in other words.

This aspect of the essay’s reception has been disappointing, as it was
only ever thought to be part of the argument. It was claimed that the
ideological aspects (what might be called the ‘generative matrix’) lay
outside the scope of our first paper but that it was necessary for a
fuller and sustained criticism. But there is also a common assump-
tion here that modernism is deterministic and an emphasis on code
reductive. On the contrary, we might argue that the received view of
modernity has stagnated and still might be usefully presented in
terms of contradiction appropriate to the examination of code.

To the art historian, formalist concerns make reference to the unfash-
ionable ideas of Clement Greenberg, in which structure and ‘pure’
form are seen to reveal the essence of the work.To the media art
historian, Russian Formalism is perhaps evoked: ‘Every work,
every novel, tells through its fabric of events the story of its own
creation, its own history… the meaning of a work lies in its telling
itself, its speaking of its own existence’11—every work carries with
it its source code in other words. But in this attention to form,
there is an implied politics of a work’s own making if we extend the
reference to other critical modernist practices, such as in the work
of Brecht or Benjamin (appropriate to the examination of genera-
tive work). For instance, Benjamin recommends that the ‘cultural
producer’ intervene in the production process, in order to trans-
form the apparatus.12 In other words, it is only through an engage-

historical and cultural contexts

167

ment with the technical apparatus the cultural producer can
engage with the relations of production. Clearly this is not pure
form (nor simply free nor open) but a decidedly dirty form of criti-
cal engagement appropriate to the political task of exposing hid-
den exploitation in order to change it for the better.

code criticism
Admittedly, there is some danger of the aestheticisation of code at
the expense of other factors —analogous to the concerns of
Benjamin in calling for a politics of aesthetics rather than an aes-
thetics of politics (in his artwork essay).This distinction can be
applied to the undialectical separation of technical concerns over
aesthetic ones. By extension, and in this context, we need to examine
art-orientated programming and program-orientated art. Clearly
and in unashamedly modernist terms, ‘both-and’ are preferred over
‘either-or’ (as Marshall Berman would put it).13 In this way, perhaps
the contradictions involved in the production of code, and the rela-
tions of its production, might be somewhat revealed.

There is a risk of making critical claims that contradict the very prin-
ciples of code as something ‘generative’; that is always in progress,
and on execution produces unpredictable and contradictory out-
comes. It is in a continuous state of ‘becoming’ (to use Henri
Bergson’s phrase).The recent book by Matthew Fuller, Behind the
Blip (2003), is useful in this connection in calling for a criticism of
‘software culture’ that does not operate at some distance from
practice but that takes account of practice. Fuller does this through
presenting examples of practices and categories that are not exclu-
sive but simply ideas in progress, briefly summarised as: firstly,
‘critical software’ designed to undermine normalised understand-
ings of the operations of software itself; secondly, ‘social software’
developed and changed through social networks of users and pro-
grammers, that emerges from a different set of social relations such
as those of the ‘open source’ community; and thirdly, ‘speculative
software’ that reflexively investigates itself, what he calls the ‘rein-
vention of software by its own means... as mutant epistemology’.14

geoff cox, alex mclean, adrian ward

168

Additionally, any ‘theory’ of software is itself speculative, and requires
an understanding of the complex interactions of processes, under-
taking theorization that is ‘able to operate on the level of a particu-
lar version of a program, a particular file-structure, protocol, sam-
pling algorithm’ and so on15—moving from the general to the par-
ticular in other words. Fuller sees ‘the task of such practical and
critical work to open these layers up to the opportunity of further
assemblage’.16

programmer as producer
Thus criticism has to engage with code in its fullest sense.This has
parallels in hardware too where the mechanisms and relations of
production remain hidden for the most part —presented as deter-
ministic and unchangeable.This can be traced back to the begin-
nings of the industrial period not least, reflecting a trend to alien-
ate the worker or user from the very processes they are involved in.
For William Bowles (1990), this is entirely expected in that craft
skills are stolen (or living labour is replaced by dead labour) and
ever more sophisticated machines require less and less skill to
operate.17 There is an obvious parallel here in computing and the
craft of programming. For Alan Sondheim too: ‘every more or less
traditional text is codework with invisible residue’18 of creative
labour. Despite surface appearances, the processes involved are
decidedly complex and there is a vast amount of expertise invested
in whatever operating system is running. For the most part these
processes are closed off either by the design of the operating sys-
tem or by the lack of programming knowledge of the user.To
Cramer, it is almost as if graphical software disguises itself as hard-
ware.19 On the other hand, the Unix command line holds multiple
possibilities for transformation and manipulation —combining
instruction code and conventional written language into potential-
ly poetic forms. Rather than the readerly properties of a graphical
operating system that encourages consumption and hides the
code, the command-line operating system of Unix is seen as
writerly in terms of openness and encouraging the reader to

historical and cultural contexts

169geoff cox, alex mclean, adrian ward

become a producer of text or code.This is important for Cramer
as it breaks down the false distinction between the writing and the
tool with which the writing is produced, and in terms of the com-
puter between code and data. Coding requires human intervention
and full access to the means of production. In this formulation, the
human subject gains agency (the power to act), as one who assem-
bles the apparatus as much as is assembled by it.

Code requires speculation; programmers execute it in their heads as
they write it. Since a programmer’s task is to develop a system
which not only uses variables but is variable itself, it is necessary
for the programmer to be able to know, or at least perceive the
states through which a piece of code moves and how these states
inform other operations in order to build a coherent system. A
programmer is therefore able to predict and speculate upon how
their code will behave in most usual circumstances. As with any-
thing that is authored, the issue of subjectivity is unavoidable,
since any particular result can be achieved in many different (and
often competing) ways. In this, any sense of improvisation relies
on a predictive understanding of complex and generative systems.
There is some risk involved and in the case of the generative

170

music performances of slub (aka Alex McLean and Adrian Ward),
the intention is to open up what otherwise would seem to be
determinate processes of how music is generated.20 We hear
glitches and all.

A live performance that includes authoring code diverges from any
perceived determination. Like the initial stages of software devel-
opment, a performance may be sketched out or planned roughly —
the entire performance might be imagined but many of the details
are not yet known. Much preparation is done for the start of the
performance, but it is only when the performance begins that
those details will start to form and inform the performance itself.
The guidelines and structures initially developed merely exist as a
framework of possibilities, but it is simply not possible at this stage
to this as merely a rigid execution of instructions. Without deny-
ing the performative elements of a finished piece of code in itself,
live-coding is a further development of a performance scenario.
This includes the potential for mistakes to positively affect the
course of the performance, that no longer expresses control but is
open to the vagaries of feedback.

self-modifying code
sub bang {

my $self = shift;

Feedback

$self->code->[3]=~ s/e/ee/;

$self->modified;

}

sub bang {

my $self = shift;

Feeeeeeedback

$self->code->[3]=~ s/e/ee/;

$self->modified;

}

sub bang {

my $self = shift;

historical and cultural contexts

17 1

Feeeeeeeeeeeeeeeeeeeeeeeedback

$self->code->[3] =~ s/e/ee/;

$self->modified;

}

http://yaxu.org/words/yaxu/feedback.html
Although code is programmed, it is not simply causal and remains

unpredictable. In our example, feedback.pl, a text editor is editing
a piece of code that has the ability to modify itself when executed.
These modifications happen directly to the code being edited in
realtime, opening up the possibility for the code to fundamentally
modify its own behaviour. Of course, this has major implications
upon the act of programming.The programmer must now think
not only of what the software will do and how it will interact, but
also how it will modify itself and remain functional, and continue
to be active.The programmer must take a leap of faith and now
consider the code’s initial logic as well as be able to follow the
code’s logic after it has modified itself, and continue to do so indef-
initely. In a sense, the software itself must contain an understand-
ing of its own performance, and be able to sustain this perform-
ance through its performance. Here, we might speculate on under-
standing code as embedding both theory (of its own agenda) and
practice (of its own action).

Additionally, the speculative distinction between the tool and the
machine is broken here. It is clear that some software exists as
a tool (as an extension of the human body) and some software
exists as a machine (a technique for automation). Coding is the
practice of creating either scenario, but a code that reflects upon
its own making in this way cannot simply be regarded as a tool —
it is reflexive. Nor is it simply a machine, since its actions are high-
ly variable and likely to fail.The similarities between this and the
self-destructive nature of many performances cannot go unno-
ticed. Self-modifying code blatantly breaks the determinism of
code and makes it explicit.

geoff cox, alex mclean, adrian ward

speculating on self-critical code
In addressing the idea of the limits of the aesthetics of code, the
suggestion is that some of the hidden oppositions between the
intellectual and physical division of labour involved in program-
ming might be revealed as a consequence. In this paper, we aim to
make a further analogy to the dialectical relationship of theory to
practice —in the lexicon of critical theory known as ‘praxis’. Praxis
is a self-creating action informed by theory, and therefore thor-
oughly active and dynamic. Is the analogy of this concept produc-
tive for thinking about the role of code beyond its functional role,
and its implications for offering a program(me) of action?
In our example, code literally performs, is thoroughly ‘write-able’,
and reflects its intrinsic contradictory and potentially disruptive

qualities. We maintain that art-orientated programming can be use-
ful in revealing these inherent contradictory tendencies. Adorno

says: ‘A successful work of art [...] is not one that resolves objective
contradictions in a spurious harmony, but one that expresses the idea
of harmony negatively by embodying the contradictions, pure and

uncompromised, in its innermost structure’.21 Perhaps ‘coding praxis’
should be seen as a contradiction in terms, and productively so.

Is it possible to be able to produce code that encapsulates
the possibility of a critical practice in this way?

This is speculative thinking of course —
and probably requires a further

paper to reconsider
the claims

of this
one

.

173

1 Geoff Cox, Adrian Ward & Alex McLean, ‘The Aesthetics of
Generative Code’, Generative Art 00, international conference,
Politecnico di Milano, Italy, 2000,
http://www.generative.net/papers/aesthetics/index.html

2 Florian Cramer, ‘Exe.cut[up]able statements: the Insistence of Code’,
in Gerfried Stocker & Christine Schöpf, eds., Code—The Language

of Our Time, Ars Electronica, Linz: Hatje Cantz, 2003, p.102
3 Donald Knuth, The Art of Computer Programming: Volume 1,

Fundamental Algorithms, (first published 1968), Reading,
Massachusetts: Addison-Wesley, 1981: v

4 This is a reference to ouvroir de potentiale litterature (OuLiPo)
5 Noam Chomsky, Syntactic Structures (first published 1957),The Hague:

Mouton, 1972; further reading on Chomsky’s early work in generative
processes,
http://www.ifi.unizh.ch/groups/CL/volk/SyntaxVorl/Chomsky.html

6 Italo Calvino, ‘How I Wrote One of My Books’, trans. Iain White, in
OuLiPo Laboratory, London: Atlas, 1995

7 Findeisen’s statement in, ‘Some Code to Die for’, quoted in Stocker
& Schöpf, op. cit., p.74

8 Florian Cramer, ‘Concepts, Notations, Software Art’, in Signwave,

Auto-Illustrator Users Guide, Plymouth: Liquid Press/Spacex, 2002,
p.102, http://www.netzliteratur.net/cramer/
concepts_notations_software_art.html

9 Florian Cramer, ibid., p.110
10 Erkki Huhtamo, ‘Web Stalker Seek Aaron: Reflections on Digital

Arts, Codes and Coders’, in Stocker & Schöpf, op. cit., 2003, p.117

174

11 Jakobson, from Littérature et signification, quoted in Terence Hawkes,
Structuralism and Semiotics (first published 1977), London: Methuen,
1986, p.100

12 Walter Benjamin, ‘The Author as Producer’ in Understanding Brecht,
trans. Anna Bostock, London: Verso, 1983, p.98

13 Marshall Berman, All That Is Solid Melts Into Air: the Experience of

Modernity, London: Verso, 1999
14 Matthew Fuller, Behind the Blip: essays on the Culture of Software, New

York: Autonomedia, 2003, p.30
15 Fuller, ibid., p.17
16 Fuller, ibid., p.21
17 William Bowles, ‘The Macintosh Computer: Archetypal Capitalist

Machine?’ Retrofuturism 13, (first written in 1987), 1990,
http://psrf.detritus.net/r/13/index.html

18 Alan Sondheim, ‘Notes on Codework’, nettime, February 11, 2004
19 Cramer, op. cit., 2003, p.101
20 Nick Collins, Alex McLean, Julian Rohrhuber, & Adrian Ward, ‘Live

Coding in Laptop Performance’, in Organised Sound 8 (3) Cambridge
University Press, 2003, p.326; these ideas have been further developed in,
Adrian Ward, Julian Rohrhuber, Fredrik Olofsson, Alex McLean, Dave
Griffiths, Nick Collins, Amy Alexander, ‘Live Algorithm Programming
and a Temporary Organisation for its Promotion’, 2004,
http://www.toplap.org

21 Adorno, from Prisms, 1967, p.32, quoted in, Martin Jay, The Dialectical

Imagination: A History of the Frankfurt School and the Institute of Social

Research 1923–1950 (first published 1973), London: University of
California Press, 1996, p.179

An earlier version of this paper was presented at the symposium

Programmation-Orientee Art, University of Paris: Sorbonne, March 2004.

