
R E A D _ M E ,

R U N _ M E , E X E C U T E _ M E :

S O F T WA R E A N D I T S

D I S C O N T E N T S , O R :

I T ’ S T H E P E R F O R M A -

T I V I T Y O F C O D E ,

S T U P I D
1

177inke arns

T h e title of this article is obviously referring to Das Unbehagen in der
Kultur, or, in English translation, Civilisation and its discontents, an
article written by Sigmund Freud in 1930 in which he describes
civilisation as a layer covering and repressing instinctual structures.
While I do not intend to go into details about Freud’s theory here,
what is interesting in the context of computer culture is the fact
that software art seems to hint at software structures and code
architectures normally hidden by surfaces or graphical user inter-
faces (GUIs). Software art thus points to what normally remains
invisible: the program code and its performativity.

In the past two or so years the term generative art has become fashion-
able. It can be found in very different contexts, such as academic
discourses, media art festivals, industrial design and architecture.
Very often, the term is used —if not 100% synonymously for soft-
ware art —as an equivalent for software art. Somehow generative
art and software art are related to each other —but what exactly
this relation is, is left mostly in the dark. To shed some light on this
connection between generative art and software art is thus one aim of
this article. The other is to propose the notion of performativity of
the code as one of the reasons for contemporary artists’ interest in
using software as an artistic material. Performativity of the code in
this case refers to its ability to act and perform in the sense of
speech act theory.

I N K E A R N S

178 historical and cultural contexts

1. Generative art ≠≠ software art
According to Philip Galanter (2003), generative art refers to “any art
practice where the artist uses a system, such as a set of natural language
rules, a computer program, a machine, or other procedural invention,
which is set into motion with some degree of autonomy contributing
to or resulting in a completed work of art.”2 Generative art thus
describes processes defined by rules, processes which are automated to
a certain degree by the use of a machine or computer, or by using math-
ematic or pragmatic instructions. By following these pre-defined rules
or instructions, once set in motion these “self-organizing” processes are
running independently from their authors or artist-programmers.
Depending on the technical context in which the process is unfolding,
the result is “unpredictable” and thus less the result of individual
agency or authorship, than much more the result of the respective pro-
duction conditions, or, if you wish, the result of the technical ecology of
a certain system.3 Galanter’s definition of generative art is, like defini-
tions by other authors, an “inclusive”, all-embracing and comprehen-
sive definition, leading Galanter to the conclusion that, surprisingly or
not, “generative art is as old as art itself.”4 But let’s return to the essen-
tial feature: The most prominent element in all these attempts to
define generative art —in electronic music and algorithmic composi-
tion, computer graphics and animation, the Demo scene and VJ culture
and industrial design and architecture5 —is the employment of genera-
tive processes for the negation of intentionality. Generative art is inter-
ested in generative processes (and in software or code) only insofar, as
they generate “unpredictable” events. In this sense —and in this con-
text —software and code are understood as pragmatic tools which
remain unquestioned themselves. Exactly because of this —because of
generative art’s focus on the negation of intentionality and the fact that
its main interest does not lie in the questioning of the tools employed
—the notion of generative art can in no way —or, let’s say in most
cases —be used as a synonym for software art.

Software art, on the contrary, describes an artistic activity which in the
medium —or rather: the material —of software allows for a critical
reflection of software (and its cultural impact). Software art does not

179

regard software merely as a pragmatic, invisible tool generating
certain visible results or surfaces, but on the contrary focuses on
the program code itself —even if this code is not explicitely
being laid open or put in the foreground. According to Florian
Cramer, software art makes visible the aesthetic and political
subtexts of seemingly neutral technical commands. Doing so,
software art can happen on different levels: it can be located on
the level of the source code, on the level of abstract algorithms
or on the level of the result generated by a certain program code.
Thus it comes as no surprise that there is a broad spectrum of
software artworks ranging from so-called “Codeworks” consist-
ing predominantly of ASCII-Code (not being executables),
to experimental web browsers (e.g. I/O/D’s WebStalker, 1997),
and fully-executable programmes (e.g. Antoine Schmitt’s
Vexation 1,6 2000, or Adrian Ward’s Auto-Illustrator ,7 2000).
In generative art, software is only one material amongst others.
Software art, on the other hand, can contain elements of genera-
tive art but does not necessarily have to be generative in a strict
technical sense (see the “Codeworks”). Software art and genera-
tive art can therefore not be used synonymously. Rather, these
two notions function in different registers, as I hope to show in
the following examples.

My first example is the project insert_coin8 by Dragan Espenschied
and Alvar Freude. In the framework of their diploma work which
they realised under the motto “two people control 250 people” in
2000/2001, the two media art students secretly installed a Web
proxy server at the Merz Academy in Stuttgart, Germany, which
via a perl script manipulated the entire Web traffic of students and
professors in the Academy’s computer network. According to
Espenschied and Freude, the aim of this project was to critically
assess the “competence and the critical faculty of the users con-
cerning the everyday medium Internet”9 .The manipulated proxy
server redirected the entered URLs onto other addresses, modified
HTML code, transformed the content of the latest news on news
websites via a simple search-and-replace function (e.g. by replac-

inke arns

180 historical and cultural contexts

ing the name of politicians) as well as the content of private e-mails
that were read through Web interfaces like Hotmail or Yahoo!.
During four weeks this project was manipulating the Web access of
the entire Academy —and it remained unnoticed. When
Espenschied and Freude announced the project publicly, almost
nobody was interested.They even published a simple-to-follow
instruction manual which would enable everybody to independently
switch-off the filter that was manipulating the Web content. But
only a minority of those concerned took the time to make the minor
adjustment in order to regain access to unfiltered information. Still
several months after the end of the experiment the Web access from
most of the Academy’s computers was filtered.

My second example, walser.php (2002) by textz.com/Project
Gnutenberg (i.e. Sebastian Lütgert), has been called “political” or
“literary”10 software. We might call it an anticopyright-activist
software which has been written in response to one of the biggest
literary scandals in Germany after the Second World War.The file
name walser.php is not only an ironic allusion to the file
“walser.pdf ”, a digital pre-printed version of Martin Walser’s con-
troversial novel which was distributed by the Suhrkamp publishing

house as an e-mail attachment —and later on, due to the unfavor-
able circumstances, called back by the publisher (nice try: calling
back a digital document). Rather, walser.php (or rather walser.pl)
by textz.com was/is a Perl script which via an appropriate Perl
interpreter can generate a human-readable ASCII text version of
Walser’s novel Death of a Critic from the 10.000 lines of source
code.11 While the source code written in Perl contains the novel
itself in an “invisible”, machine-readable form and thus can be dis-
tributed and modified as free software under the GNU General
Public License, it may be executed only with the written permission
of the Suhrkamp publishing house.12

While Espenschied & Freude’s experiment on filtering and censorship
of Internet content points to the relatively unlimited potential of
control that is contained in software, walser.php offers a practical
solution for dealing with the commercial restrictions which threat-
en the freedom of information on the Internet in the form of
Digital Rights Management Systems (DRM). While insert_coin
temporarily realises a dystopian scenario in form of manipulated
software, textz.com with its walser.php project develops genuinely
utopian “counter measures in the form of software.”13

inke arns

182 historical and cultural contexts

Both of these projects are generative in the best sense of the word.
However, neither insert_coin nor walser.php comply with the defi-
nitions of “generative art” currently found predominantly in the
area of design. Philip Galanter for example, whom I quoted in the
beginning, defines generative art as a process contributing to or
resulting in a completed work of art. Similarly, Celestino Soddu,
director of the Generative Design Lab at the Polytechnical
University of Milano and organiser of the Generative Art14 confer-
ences, defines “generative art” as a processual tool enabling the
artist or designer to “synthesize […] an ever changing and unpre-
dictable series of events, pictures, industrial objects, architectures,
musical works, environments, and communications.”15

What becomes apparent in these quotations is the fact that generative
art is interested predominantly in the results created by generative
processes. Software in this context is seen and employed as a prag-
matic-generative tool or device for the creation of certain results —
without being questioned itself. The generative processes brought
about by software here primarily do serve to avoid intentionality
and to produce an unexpected, arbitrary and inexhaustible diver-
sity of forms. The n_Gen Design Machine by Move Design, sub-
mitted to the Read_Me Festival 2003 in Helsinki, as well as
Cornelia Sollfranks net.art Generator16 (1999) which at the push
of a button generates net art, should be seen as ironic commen-
taries on “generative design” (mis-)understood in such a way.17

insert_coin and walser.php go beyond such definitions of “generative
art” or “design” in so far as these projects are interested far more in
the coded processes generating certain results or surfaces. This
interest in the coded processes, or, to be more precise, in the sig-
nificance and implications of software and coded structures,
sharply distinguishes them not only from generative art but also
from many interactive installations of the 1990s which displayed
their disinterest in software by hiding the program code in black
boxes. Instead, projects like insert_coin and walser.php aim at ques-
tioning software and code as culture —and at questioning culture

183

as implemented in software. For this, they develop “experimental
software” (in insert_coin a proxy server and in walser.php a perl
script), which does not only generate arbitrary surfaces but which
critically investigates the technological, cultural or social impact
of software. What’s more, the writing of “experimental software”
is very well concerned with artistic subjectivity, as can be seen in
the usage of different private languages, and less with proving evi-
dence of a machinic creativity (whatever this may be): “Code can
be diaries, poetic, obscure, ironic or disruptive, defunct or impos-
sible, it can simulate and disguise, it has rhetoric and style, it can
be an attitude”,18 thus the emphatic definition by Florian Cramer
and Ulrike Gabriel, both members of the transmediale software
art jury in 2001.

I have tried to set up a somewhat polemical comparison between generative
art and software art which I am including here:

inke arns

Generative art
Focus on the surface (“pheno-
text”) created by a generative
process (“black box problem”)

Software as pragmatic/neutral
tool serving to create a certain
result; the tool itself is not being
questioned

Software as pragmatic-
generative tool

Efficient code (“beautiful
algorithms”*)

Software art
Focus on generative process (set
in motion by a “genotext”)
which might generate surfaces
or other results

Software as culture which is
being questioned; interest in
aesthetical and political sub-
texts; software can be “experi-
mental” and “non-pragmatic”

Software or code as a work of its
own (possibly experimental)

Code as excess, code as extrava-
gance, not necessarily efficient

The notion of software art (or: artistic software) was first coined and
introduced as a competition category in 2001 by the Berlin media
art festival transmediale19 .20 Software art, which other authors call
“experimental”21 or “speculative software”22 as well as “non-prag-
matic” and “non-rational”23 software, encompasses projects, if we
are to follow the definition given by transmediale festival, whose
essential artistic material is program code, or who critically deal
with the cultural understanding of software. Program code is not
being understood as a pragmatic tool serving to make the actual
work run, but as a generative material of machinic and social
processes. In this way, software art can as well be the result of an
autonomous and formal creative practice as well as it can also criti-
cally refer to existing software and the technological, cultural or
social impact of software.24

Interestingly, the difference between software art and generative art
reminds one of the difference between contemporary forms of
software art and early computer art of the 1960s (and here I am
referring to Tilman Baumgärtel’s “Experimental Software” from
2001).The difference can be described as follows: Works from the
field of software art, or experimental software “are not art that has
been created with the help of the computer, but art that happens in the

184 historical and cultural contexts

Employment of generative
processes in order to negate inten-
tionality

Fascination of the generative

“Software artists […] seem to con-
ceive of generative systems not as
negation of intentionality, but as bal-
ancing of randomness and control.
[…] Far from being simply art for
machines, software art is highly con-
cerned with artistic subjectivity and its
reflection and extension into genera-
tive systems.”** (Cramer/Gabriel)

Interest in the “performativity”
of code

185

computer; software is not programmed by artists in order to produce
autonomous artworks, but the software itself is the artwork. What is
crucial here is not the result but the process triggered in the comput-
er by the program code.”25 Though the computer art of the 1960s is
close to concept art in its privileging of the concept before its realisa-
tion —nevertheless, computer art is not consistently thinking this
idea to an end: With its works executed on paper by plotters and dot
matrix printers it emphasised the final product —but not the pro-
gram or the process which generated the work.26 In current software
art projects this relation is reversed: Here its is “exclusively about the
process generated by these programs. While the computer art of the
60s and 70s regarded the processes in the computer only as a method
for generating an external result, but not as a work in ist own terms,
and treated the computer as a sort of black box, thus conceiling the
operations and procedures going on inside it, today’s software proj-
ects precisely want to focus on these processes, make them visible
and to bring them up for discussion.”27

11. Performativity of the Code
vs. Fascination of the Generative
The current interest in software is, as I see it, not only grounded in
the fascination with the generative aspect of software, i.e. on the
ability to create and to procreate in a purely technical sense.What
interests the authors of these projects is much more something I’d
like to call the performativity of code. By performativity of the code
I mean its ability to act and perform in the sense of speech act theory.

I am thinking here of a series of lectures held by John Langshaw
Austin at the Harvard University in 1955. In these lectures, entitled
How to Do Things With Words, Austin formulated the ground-
breaking idea that language does not only have a descriptive, refer-
ential or constative function, but also possesses a performative
dimension. Austin distinguishes three different speech acts: the
locutionary,28 the illocutionary,29 and the perlocutionary30 act.
Only illocutionary speech acts are performatives —i.e., they create
or do what they describe, provided that they are set within a matrix

inke arns

that is simultaneously social and semiotic.This draws attention to
the importance of the context of a performative utterance.The illo-
cutionary, or performative utterance can succeed or fail, depending
on whether it is set an an appropriate context or not.

Accordingly, if I speak of the performativity of code, I claim that this
performativity is not to be understood as a purely technical perfor-
mativity, i.e. it does not only happen in the context of a closed tech-
nical system, but affects the realm of the aesthetical, the political
and the social. Program code is characterised by the fact that here
“saying” coincides with “doing”. Code as an effective speech act is
not a description or a representation of something, but, on the con-
trary, it directly affects, and literally sets in motion —or it even
“kills” a process.31 This “coded performativity”32 has immediate, also
political consequences on the actual and virtual spaces (amongst
others, the Internet), in which we are increasingly moving and liv-
ing: it means, ultimately, that this coded performativity mobilises or
immobilizes its users. Code thus becomes Law, or, as Lawrence
Lessig has put it in 1999, “Code [already] is Law.”33 This is the rea-
son why software art is rather more interested in the “performance”
than in the “competence” (terms coined by Noam Chomsky), rather
more interested in the parole than the langue34 (famous opposition
coined by Ferdinand de Saussure). In our context, performance and
parole mean the respective actualisations and concrete realisations
and repercussions a certain program code has on, let’s say, social sys-
tems, and not only what it does or generates in the context of
abstract-technical systems. In the projects insert_coin and walser.php
the generative is deeply political —and this is so because the secret
transformation of existing texts (in the case of insert_coin) and the
extraction of a text protected by copyright law from a Perl script (in
the case of walser.php) is questionable and critical not in the context
of a technical system, but in the context of social and political systems
that are increasingly relying on these technical structures.

Certainly one of the “most radical understanding[s] of computer code
as artistic material”35 can be found in the so-called Codeworks”36

and the artistic use they make of program code. “Codeworks”

186 historical and cultural contexts

187

almost exclusively consist of texts which are sent to mailing lists
like Nettime or 7-11 in the form of simple e-mails. “Codeworks”
make use of formal ASCII instruction code and its aesthetic —
without relying on surfaces and graphical user interfaces usually
created by this code. Works by Jodi, Netochka Nezvanova aka
antiorp and mez37 thus recall the existence of a hidden, “invisible
shadow world of process,”38 as Graham Harwood has called it.
Technically speaking, these “Codeworks” are located on the
opposite side of an imaginary spectrum of generativity.
However, the status of these languages or these language-like
bits and pieces remains ambivalent: In the perception of the
recipient they oscillate between supposed executability, thus
functionality, and non-executability — i.e. dysfunctionality — of
the code; in short: between significant information and mean-
ingless noise. This phenomenon can be seen very clearly in Jodi’s
walkmonster_start () e-mail which was sent to the Nettime mail-
ing list on October 22, 2001. While the text contained in this e-
mail resembles executable program code, for the non-specialist
reader it remains completely open whether in another location in
the computer this text could in fact be compiled, and thus be
turned into machine-readable algorithms, and thus, ultimately, be
executable.

What plays a major role here rather than the actual technical execu-
tion is the understanding of the fact that the code fragments used
in the Codeworks can potentially be executed and thus become
performative. However, in “The Aesthetics of Generative Code”
Geoff Cox, Alex McLean and Adrian Ward claim that “the aes-
thetic value of code lies in its execution, not simply in its written
form”.39 While I can agree with this assertion for projects like
insert_coin and walser.php — because their critical (and perhaps
even poetic) momentum lies exactly in their technical execution
— this definition would have to be extended regarding the struc-
ture of the “Codeworks”. The aesthetic and poetic value of these
“Codeworks” indeed is constituted not only by their textual
form, but by the fact and the knowledge that they might poten-

inke arns

tially be executable. I would like to broaden the notion of the
generative in the sense that code is not only executable in tech-
nical environments, but can become extremely productive as
“imaginary software” in the reader him- or herself.
In contrast to generative art, software art directs our attention

on the fact that our (media) environment is increasingly relying
on programmed structures. In doing so, the “Codeworks” use

the “poor” medium of text which at the same time appears
to be performative, or executable in the context of the
command line. By using precisely this ambivalence or
this oscillation between simplicity and totality of exe-
cution, the codeworks, and, more generally speaking,

software art as a whole, point to the potentially
totalitarian dimension of the algorithmic

program code, the “invisible
shadow world of

process”
.

189

1 This article is based on a lecture held in the context of Programmation

orientée art—Décodage et critique, Colloque international, Sorbonne,
Paris, March 19–20, 2004

2 Galanter, P.: “What is Generative Art? Complexity Theory as a Context
for Art Theory”, Generative Art Proceedings, Milano 2003, p.4,
http://www.philipgalanter.com/pages/acad/media/ga2003%20proceed-
ings%20paper.pdf.The mailing list eu-gene is devoted to the discussion
of generative art, see http://www.generative.net/.

3 See also Cox, G.: anti-thesis: the dialectics of generative art (as praxis),
MPhil/PhD Transfer Report 2002, http://www.anti-thesis.net/. A simi-
lar definition can be found in Adrian Ward: “Generative art is a term
given to work which stems from concentrating on the processes involved
in producing an artwork, usually (although not strictly) automated by the
use of a machine or computer, or by using mathematic or pragmatic
instructions to define the rules by which such artworks are executed.”
(http://www.generative.net)

4 Galanter, ibid., p. 1
5 Galanter, ibid., p.2, calls these four areas the four “main clusters”

of generative art.
6 http://www.gratin.org/as/
7 http://www.signwave.co.uk
8 http://www.odem.org/insert_coin/
9 Cf. Espenschied/Freude’s text for the Internationaler Medienkunstpreis

2001, http://www.online-demonstration.org/insert_coin/imkp2001.html
10 Cramer, F.: “walser.php” In: Goriunova, O. / Shulgin, A. (eds.): Read_Me

2.3. Reader. Helsinki: Nifca, 2003, pp.76–78, here: p.76

190

11 http://textz.com/trash/walser.pl.txt
12 Cf. textz.com: “Suhrkamp calls back walser.pdf, textz.com releases

walser.php”, http://textz.com/trash/ readme.txt
13 Cramer, ibid., p. 77
14 Cf. http://www.generativeart.com/
15 Soddu, C.: “Generative Art and Architecture”, Abstract, without date,

http://www.nyu.edu/studio/generative.html
16 Cornelia Sollfrank, net.art generator (1999),

http://soundwarez.org/generator/
17 Cf. Goriunova, O. / Shulgin, A.: “n_Gen Design Machine” In:

Goriunova, O. / Shulgin, A. (eds.): Read_Me 2.3. Reader. Helsinki: Nifca,
2003, pp.66–67, here: p.66.

18 Cramer, F. / Gabriel, U.: “Software Art” In: Broeckmann, A. / Jaschko, S.
(eds.): DIY Media—Art and Digital Media: Software - Participation -

Distribution.Transmediale.01. Berlin, 2001, pp.29–33, here p.33
19 Other notable events: Kontrollfelder (Dortmund 2001, curated by Andreas

Broeckmann and Matthias Weiß, http://www.hartware-projekte.de/
programm/inhalt/kontroll.htm); the Read_Me Festival, conceived by
Olga Goriunova and Alexei Shulgin (Moscow 2002, Helsinki 2003,
http://www.m-cult.org/read_me/) and the exhibitions Generator (GB
2002, curated by Geoff Cox, http://www.generative.net/generator.html),
CODeDOC (New York, Sept. 2002, curated by Christiane Paul,
http://artport.whitney.org/commissions/codedoc/), I love you - comput-

er_viren_hacker_kultur (Frankfurt/Main, Jan. 31-Feb. 5, 2003,
http://www.digitalcraft.org/index.php?artikel_id=269) and the software
art repository Runme, launched in January 2003 (http://runme.org).
Further examples of software art can be found on these Web sites.The
most historically significant year in terms of software art is 1970, during
which three software art-related events took place: Jack Burnham’s exhi-
bition Software— Information Technology: Its New Meaning for Art, which
took place at the Jewish Museum in New York; the exhibition curated by
Kynaston McShine at MoMA in New York, entitled Information; and
the foundation of the magazine Radical Software by Beryl Korot, Phyllis
Gerhuny, and Ira Schneider (http://www.radicalsoftware.org/).

191

20 For an early, programmatic concept paper on software programming and
art, see Cox, G. / McLean, A. / Ward, A.: “The Aesthetics of Generative
Code” (2000), http://generative.net/papers/aesthetics/. An attempt to
formally define and research the archaeological history of software art
using literary and artistic examples can be found in Cramer, F.:
“Concepts. Notations. Software. Art”, Mar. 23, 2002,
http://userpage.fu-berlin.de/~cantsin/homepage/writings/
software_art/concept _notations/concepts_notations_software_art.html

21 Baumgärtel,T.: “Experimentelle Software. Zu einigen neueren
Computerprogrammen von Künstlern”, Telepolis, Oct 28, 2001,
http://www.heise.de/tp/deutsch/ inhalt/sa/9908/1.html

22 Matthew Fuller differenciates between “critical”, “social” and “specula-
tive software”. Cf. Fuller, M.: “Behind the Blip: Software as Culture”,
Nettime, Jan 7, 2002, http://amsterdam.nettime.org/Lists-Archives/
nettime-1-0201/msg00025.html

23 Olga Goriunova and Alexei Shulgin define “artistic software” as “non-
pragmatic” and “non-rational”: “[I]f conventional programs are instru-
ments serving purely pragmatic purposes, the result of the work of artis-
tic programs often finds itself outside of the pragmatic and the rational.”
(Goriunova, O. / Shulgin, A.: “Artistic Software for Dummies and, by
the way,Thoughts About the New World Order”, Nettime, May 26,
2002, http://amsterdam.nettime.org/Lists-Archives/nettime-1-
0205/msg00169.html)

24 Cf. http://www.transmediale.de/04/pdf/
tm04clubtm04_formular_ausschreibung.pdf. On software art cf. the
panel discussion during transmediale.03 (Künstlerhaus Bethanien,
Berlin, Feb 4, 2003), http://www.softwareart.net/, as well as Goriunova,
O. / Shulgin, A. (eds.): Read_Me 2.3 Reader - about software art. Helsinki:
Nifca, 2003, http://www.m-cult.org/read_me

25 Baumgärtel, ibid. [my accentuation]
26 Typical in this context are the artworks by the so-called “Algorists”, who

were co-founded by Roman Verostko. Cf. Verostko, R.: “Epigenetic
Painting: Software As Genotype, A New Dimension of Art “ (1988),
http://www.verostko.com/epigenet.html; Verostko, R.: “Epigenetic Art

192

Revisited: Software as Genotype”, in: Schöpf, C. / Stocker, G. (eds.): Ars

Electronica 2003: Code - The Language of Our Time. Ostfildern: Cantz,
2003, pp.156–167. Here one finds formulations like: “The essential char-
acter of each finished work is derived from the ›form-generating-proce-
dure‹ or ›algorithm‹ acting as genotype. For this reason one could say that
the finished work is an epiphany, or manifestation, of its generator, the
code. For me each work celebrates its code […].”

27 Baumgärtel, ibid.
28 Locutionary: The speech act as meaningful utterance.
29 Perlocutionary: A meaningful utterance with a certain conventional —

performative —force.
30 Illocutionary: A meaningful utterance with a certain conventional force

non-conventionally bringing about a certain effect.
31 Cf. Arns, I.: “Texte, die (sich) bewegen: zur Performativität von

Programmiercodes in Netzkunst und Software Art” In: Arns, I. / Goller,
M. / Strätling, S. / Witte, G. (eds.): Kinetographien. Bielefeld: Aisthesis,
2004 [forthcoming]

32 Grether, R.: “The Performing Arts in a New Era”, Rohrpost, July 26,
2001, http://coredump.buug.de/pipermail/rohrpost/2001-
July/000353.html

33 Lessig, L.: Code and other Laws of Cyberspace.
New York: Basic Books, 1999

34 The distinction between competence and performance is credited to
Noam Chomsky’s generative transformation grammar (see Chomsky,
N.: Aspects of the Theory of Syntax, Cambridge, MA., 1965); the distinction
between langue and parole is attributed to Ferdinand de Saussure
(see de Saussure, F.: Cours de linguistique générale, Paris 1967 [1916]).

35 Cramer, F.: “Exe.cut[up]able statements: Das Drängen des Codes an die
Nutzeroberflächen”, in: Schöpf, C. / Stocker, G. (eds.): Ars Electronica

2003: Code - The Language of Our Time. Ostfildern: Cantz, 2003
36 Cf. on this Sondheim, A.: “Codework” American Book Review, Vol. 22,

Issue 6 (September/October 2001),
http://www.litline.org/ABR/PDF/Volume22/sondheim.pdf

37 Cf. for more examples Florian Cramers “<nettime> unstable digest” auf
http://www.nettime.org/archives.php

38 Harwood, G.: “Speculative Software” In: Broeckmann A. / Jaschko, S.
(eds.): DIY Media - Art and Digital Media: Software - Participation -

Distribution.Transmediale.01. Berlin, 2001, pp.47–49, here p.47
39 Cox, G. / McLean, A. / Ward, A.: “The Aesthetics of Generative Code”

(2000), http://generative.net/papers/aesthetics/

* Cf. Donald Knuth,The Art Of Computer Programming: Vol. 1,
Fundamental Algorithms, Reading, Mass. 1997.

** Florian Cramer / Ulrike Gabriel, quoted after Andreas Broeckmann,
“On Software as Art”, in: Sarai Reader 2003: Shaping Technologies,
New Delhi 2003, pp. 215-218, here: p. 216.

