
D I G I TA L

O B J E

C T

S

27

Digitality and objects
If software has a social and technical imaginary, if it is culturally
active as a force in itself, what does that mean for data more gener-
ally, the objects constructed, giving rise to, or handled by software?

In a recent interview Michel Serres1 suggests that a typical contempo-
rary development is a drive experienced in science to aim towards
an understanding of the specificity of an object. Earthquake-causing
tectonic faultlines or individual livers are rendered, by various meth-
ods and by the peculiar capacity for differentiation typical of digital
analysis, as something with individual qualities and traits rather
than generalised or diagrammatic instantiations of a ‘type’. Every
scanned liver, every library book in a database, every phone, person
or every mapped asteroid is also a digital object.

Under digitalization more generally, there is a widespread tendency
for all objects, processes and qualities to become transduced by
data-gathering, patterning and identification. Take a virus, this
little darling is known by virtue of an electron microscope to be so
cute and cuddly and roundishly polygonal with just enough weird
fuzzy bits and clotted fraying edges to make it amenable to love.
It looks like another planet. One you could escape to, off earth,
find death. And this is the thing about an object, no matter how
much of a specificity it can be recognized as being, it is not alone.
David Wojnarowicz writes, “When I was told that I’d contracted
this virus it didn’t take me long to realize that I’d contracted a dis-
eased society as well.”2

matthew fuller

M AT T H E W F U L L E R

28

Over a decade after his death in New York on the 22nd August 1992
I want to hold on to this quote from Wojnarowicz, in fact all of his
work, because it stands as a reminder of much of what is missing
from debates around software, a thick, brilliant, absolutely enraged,
vividly sexual and gregarious involvement with multiform life.
Software is part of this, but not much. That there are programs
such as iLife or MyLifeBits that would have you believe so, life suf-
fused with the toxic long-chain polymer aroma of fresh white com-
puter plastic, there are programs such as SAP which would like to
have you not notice their structuration of your life. The X-rays
from hell that Wojnarowicz writes about are not simply that of the
perfectly named and unique human organ, they are about the ten-
derness and corporeality of living things, bodies. When, at birth or
before, you contract the diseased society that you live in, you, as an
object, are in connection with a million relations of dimensionality,
permutational fields of being.

But what Wojnarowicz’s text also shows is that things don’t just all fit.
There is no necessary total inter-relation of all parts with every part
a mirror and a node of the universe with a pre-established harmony
between all substances. There are, as a shorthand, enormous, insensi-
ble gaps between knowable parts. This essay does not attempt to rem-
edy such a situation. What is hoped is to set out some of the terms in
which objects are composed in recent software projects in which the
nature of the digital object is recognized as being significant.

It has been established that software has a politics, an aesthetics, that
these elements and compositions of algorithmic logic invent,
deploy and make stable different kinds of sociability and inter-rela-
tion with other elements. However, such general concepts need to
made more supple and detailed. If materials have their own capaci-
ties, which may or may not match the scalar models which we have
of them and by which we arrange behaviour with and through them,
what does this mean for digital objects? How are they separate, at
what scale, and how can these permutational fields, their dimensions
of relationality be sensed, made palpable and used?

soft ware: social perspective

29

Temporality
The work of Walter Benjamin, performing “a sort of spectrum
analysis”3 on the complex relations of history and futurity embed-
ded in and coursing through the fruits of the arcades, is perhaps
significant here. Objects carry utopias with them, imaginary
worlds of ideal use and misuse, of combination with other ele-
ments in a planned or tasteful grammar, of imaginary relations to
the world as modern or bucolic, or as easy, sophisticated, charm-
ing, portable, educational, ornate and so on. In Benjamin the
sacred and predictable path in time from the lower to the higher is
apparent in some texts, as in those moments when he is more
fiercely Marxist. In others, as in the text where he most clearly
states his conception of historical materialism,4 this philosophy
appears as a weave, with threads weft in and out of the warp, to dis-
appear, reappear, changed in their context. It is in some sense an
immensely horizontal, parallel vision of time, time as a carpet, as
well as one that includes a notion of work and of process, a woolly
cellular automaton, seething with bugs, stray threads and knots ‘as
an afterlife of that which has been understood and whose pulse can
be felt in the present’.5 But it is also one, ‘directed towards a con-
sciousness of the present which explodes the continuum of
history’.6 That is, it is an approach to time that is thick, that senses
the muffled thunder and still present sparks in objects and ideas ‘of
the past’ and that draws the question of what is to be done into the
present with a sonorous and stinging sense of the possible.

We might ask, what is temporality to a digital object? We know that
versioning forms one sort of clock-setting in both proprietary and
free software that is interwoven with that of hardware manufactur-
er, but it is also clear that some software goes explicitly sideways in
relation to such orderly time (think of Dyne:bolic, a Linux distri-
bution written only for low-end, cheap, Pentium processors.7)
Asking how software produced using art methodologies operates in
relation to time is not simply so that we can confirm the existence
of dull retro-styled work, but also to see it as a potential dimension
for escape and invention, for tinkering. As standard software

matthew fuller

30

marches onwards with its own feature-panicked elegance it draws
a line which in part, describes the space of what is possible and
which at the same time allows the impossible or the improper to
find itself more easily. The development of these projects and oth-
ers allows the terrain of the digital imaginary to stretch and reflect.

Composition
Shared with Benjamin’s understanding that the historical object
constitutes a problem in itself is the understanding that an object is
never in itself complete. One software project I worked on as a col-
laboration with Graham Harwood, TextFm8 showed that technical
organizations call for social and medial organizations around them,
certain kinds of work and activity in order for them to occur. This
work couldn’t simply be aimed as a downloadable at an individual
user on the other side of a PC, but needed organizations, people to
work on it, to put up transmitters, use radios and phones, use their
knowledge of a city to make news spread in the right way and so on.

But that sense of assemblage doesn’t simply stop at the casing of
a computer, or at the head and foot of a script. Elements which are
commonly understood to be simply technical —that is to have the
horizon of their dimensions of relationality being as described in
the accompanying standard object documentation —are here
understood as also having capacities drawn out of them according
to context and composition. All three of the projects discussed
here also have something of this quality, they address more than
just a single user, but imagine or invent a social process.

Aside from social organisation that each object induces and is embed-
ded in we can also mask this question on a much smaller ‘internal-
ist’ scale: what relations are developed between software art and
what say ICT disciplines might call ‘content’, text, image files, and
so on, but also, what are the ways the software makes elements
available for use, hides things, functions or processes as internal to
itself, or treats this as that which is passing through, which it work
on, that give it purpose, but which are not themselves software?
So organisation passes from one scalar state to another, but as it

soft ware: social perspective

31

moves, does not stay the same. At each scale, and there are many,
different relations of dimensionality come into composition.
Social software that reflects upon and incorporates visions of the
social that are repressed in mainstream software is a particularly
interesting place to begin to look at such issues.

Nine
Nine is a web based application developed by Harwood for
Mongrel.9 Based on the web, and useable via a browser, it works as
a lightweight multimedia collaging structure.

Nine builds on the fact that handling algorithmic materials and logical
and procedural processes have become part of peoples’ general
skills. That is, that people may not necessarily have skills in using
computers directly, but they are used to handling social processes
that have been reformulated for the benefit of easy computeriza-
tion. In some contexts this is not necessarily a benign skill, we
have all seen parts of life ripped open by computerized arithmeti-
co-material drives founded upon quantification and calculability.
But, as a social software10 project, nine allies such skills with the
capacities people have to, as Arjan Appadurai says, live in several
social imaginaries simultaneously.

On opening the Nine website you are faced with a grid containing
patches of colour. Each install of nine sits on a server and contains
a pre-coded maximum number of uses. The square of squares that
you see first when logging-in sets this, a very visible constraint,
twenty-seven squares on each side of a square. Each smaller
square representing a ‘map’ of nine images. This set of nines con-
tinues, with each image having nine potential hot spots to which
data such as sound, text, video, internal link or a zoom can be
added. One of the things that becomes apparent very fast in the
use of nine is that the structure of permissions and of hierarchies
that sits underneath most software is very much at the surface
here, whilst the software is aimed at being ‘as light as possible’11

it is extremely rigid about the roles of users and of data. Using the
software or reading the nine help file,12 you easily become aware of

matthew fuller

32

how this software sets each data element in a recursive procedure of
sets, permissions and process. The repetitive nature of the work is
clear, it is there to force through a thinking about structure. The
constraint to nine images is a way of cutting through digital abun-
dance. It means that some kind of selection must be made. When
it comes to the nine hot-spots though, it seems as if this may
already be too many. I’ve not yet seen any nine maps with all of
these ‘used up’. Is the rigid arbitriness of the number nine as a gov-
erning principle tight enough? Nine by nine as a set of commit-
ments to produce material is pretty substantial. At the same time,
there are users clearly building up significant archives of material,
such as the images, sound and text on Congolese music by Vince.

The means of differentiation of objects are quite clear. How the proj-
ect then stitches its parts together is rather interesting. Whilst
there is no facility to add credits to images, other than in a text
link, in order for one Nine ‘knowledge map’ to embed an image
from another, it is necessary for the owner of that map to email
the person who is responsible for the one in which the picture sits.
The system sets up a simple need for people to network, but more
importantly to register that their images have a longer-term life
than a quick afternoon’s work. Users have often been intrigued by
the meanings ascribed by others to their images, the links that are
made of them. In another form of link, the system keeps a flat list
of every word used. Map maintainers are prompted by email
whenever another user uses the same word. Semi-automated links
between discrete texts can thus also be set up. There is thus an
interesting interplay between different layers of the database its
ongoing use and the possibility for registering common terms or
ideational nodes across time and place.

The three software projects here each develop a particular set of mecha-
nisms for collaborative work on data. All three are also in whole or in
part written for and arise from workshops in which someone with
previous experience of the software, often the producers, works with
others who may often have less experience in direct use of comput-
ers. Although the softwares are written for a potentially ‘universal’

soft ware: social perspective

33

usage, they are often particularly local in their application. Nine
for instance is often used, and used well, by Imagine IC13 a small
institution concerned with experiences of migration sited only a few
minutes walk from where the software was written in Amsterdam’s
Bijlmer suburb. Crucially, these projects do not formulate them-
selves in terms of a question of ‘access’ or as a response to the too
rigid concept of ‘the digital divide’, but as a move to generating
the means for multiple digital imaginaries to thrive.

Opus commons14

Opus Commons is a system developed by Sarai media centre15 in
Delhi and often used for exhibition purposes by Raqs media col-
lective. In a sense the project is an attempt at formulating a con-
current versioning system for digital objects. CVS is a means of
storing, tracking, and annotating versions of software or parts of
software in a way which allows people to use view and develop
code, to produce multiple variations from the same source, and
crucially, to go back to earlier versions if errors are made. Such
a link to CVS is clear in Opus —the archive of its own code is
directly linked to from the front page of the Opus site.

Where the interface approach of nine is to simplify what can be done
in order to encourage fast use and to provide extensive documenta-
tion for detailed questions, Opus presents the phenomenological
difficulty of interface by placing up front an immense quantity of
data about each object, its qualities and processing. To those used
to the standard behaviour of a GUI removing or graying out
redundant functions according to mode, Opus is a significant con-
fusion. It feels like an attempt to carry over the sensibility of the
command line to a graphically rich system and so the screen reads
as cluttered. The use of graphic background elements and other
more decorative elements —compare the linked CVS for code —
suggests that the project might benefit from a clarification of its
design. At the same time, the presentation of ‘more than neces-
sary’ information about the nature of the objects it works with is an
explicit part of the aesthetic of this system. Within the area of

matthew fuller

34

software art or in digital art generally there is a tendency to what
might be called ostentatious desublimation, a ponderous revela-
tion of this or that technical truth of a system which replaces meta-
physics with the awe of the, often studiously irrelevant, detail.
Opus answers this tendency by turning to account, by making nec-
essary a consideration of the working culture of digital objects.
It is however a working culture that is part actual, part imaginary.
Perhaps the dream-user of Opus does not yet exist or if they do, it
is quite possible that they have a sophisticated enough imagination
of software or media not to need this particular armature.16

Opus puts in place a means by which what Serres points to, that is the
immense individuation of parts that is inherent to the digital, can
be combined with a subtle and compelling means for recognizing
and working on variation of use over time. Much of how the sys-
tem achieves this is through the way in which it arranges its under-
standing and handling of objects. There is an extensive manual for
the project, but the stage is set for the work by a license based on
the Gnu Public License.17 This version of the GPL is integrated
into the project at a functional as well as conceptual level: the
repertoire of work activities that Opus is concerned with are the
capacity to view, download, transform and upload digital objects,
with the condition that any such action contributes to an ongoing
shared pool of resources.18

There is a particular vocabulary19 used in Opus which marks out its
particular attention to both the mechanics and imaginary of uses
and changes to a digital object:

Source; Recensions; Project; Themes; Keywords; visualisation.20

The first two are concerned with how the particular object sites
in relation to its specificity, there is a hierarchy in time beginning
with the first manifestation of an object in the system. Themes
and projects are to do with the clustering of objects and the clus-
tering of clusters or parts of clusters. Keywords and the schema
for visualising the work provide means for the objects to be
linked. The concept of a rescension is key to understanding the
pattern of work:

soft ware: social perspective

35

“A Rescension is either a re-arrangement of an existing text, or a re-
working of an existing text, incorporating new materials, and/or
deleting some old ones, or , a new edition with a substantive com-
mentary or annotation.

A Rescension is neither a clone, nor an authorised or pirated copy nor
an improved or deteriorated version, of a pre-existing text, just as
a child is neither a clone, nor an authorised or pirated copy, nor an
improved or deteriorated version of its parents.”21

Here Opus can be seen as experimenting with another set of dynamics
of circulation and linkage of digital objects. Whereas Nine uses
a spatially-gridded model that interlinks structures of ownership
and permission in order to make collaboration something that has
to occur explicitly between users, Opus uses sets of spiraling data.
Collaboration occurs through the pool of resources and through the
availability of particular kinds of objects rather than through direct
contact. One can quibble with the possible consequences of using a
biological simile of the parent and child but what is interesting is its
significance in terms of an attempt to produce a way of modeling
a system on an understanding of digital objects as something that is
always in circulation. The claim that information wants to be free is
by now familiar, and in many cases, actually useful. What we know
now is that this is not a fait accompli. The inherent capacity of digi-
tal objects to be circulated needs a little help, conceptually as well
as in terms of technology. It is perhaps in its metaphorical invert-
ing of the usual computer science understanding of the parent and
child as describing respective standing in rank (in a directory or
network topology for instance) that the significance of this project
can be sensed in relation to time. Time becomes resonant and more
aware of the fields of permutation and possibility that course
through it and make it. The achievement of Opus is in finding
a way to begin such work, but more important is the means by
which it does so. That is, it is not simply theoretically mellifluous,
but tests and composes itself also at the level of practice.

Every element has a short description and full description of their
‘meaning’ and they are also extensively annotated in terms of size,

matthew fuller

36

file type and other details. Because the project is grounded on
this sense of circulation, reversioning and weaving of digital
objects it pays attention to the cultural implications of file for-
mats, in ways which are often hidden as irrelevant by systems
such as those for content management. The project works
because it is sensitive to digital objects, I would argue that in
part this is a little overdone, resulting in a complicated interface,
but at a more fundamental level, which is also more simple, the
project works. Key to this is its treatment and understanding of
digital objects and the way they are embedded in and engage dif-
ferent working cultures.

Spring Alpha22

Serres’ brief comment describes a moment in which scientific
procedures allow greater insight into material formations, to the
understanding that- by virtue of their passage through times,
through growth in a particular body, through their contraction
of a society23 — all livers are not of one kidney. It also shows that
arithmetico-material drives continue to expand and modulate
compositions and elements in the continuing metamorphosis of
being by knowledge and in reciprocal or asymmetric oscillations
between the two. When it comes to digital objects as elements in
software we can, at times, plan to be rather more shallow.
Everything is already a standard object. There is no variation
between an ‘order of nature’ and an anomaly which either escapes
from that order or contributes to marking out the space of the
known and possible.

How can social software projects establish the conditions for other
forms of knowledge to become manifest and active in the use of
the digital objects they make available? To put it another way,
what happens to the special understanding the poppy farmer, the
food manufacturer and the architect have about the objects they
take part in generating when you find an object that links them:
say, a few wraps of heroin hidden from moisture in a crisp packet
and from sight between loose bricks in a wall at the back of a pub?

soft ware: social perspective

37

How is it possible to make a systematic (for in software there can be
nothing else) domain in which such variations in the use, meaning,
capacities and conjunction of objects becomes possible? Alternately,
how can the thickness of meaning, of pasts, of repressed potencies
which Benjamin senses in objects in relation to time also be made
palpable in the seemingly ever-on presentness of digital objects?

Spring_alpha is an open source gaming system currently in the early
stages of development, and a project which in part attempts to deal
with some of these problems. How is it possible to make a shared
model of an imaginary social conflict, a revolutionary situation, when
the everyday objects which actor-network theory shows as providing
a hidden factor of stability in social relations are even more funda-
mentally reified by virtue of their being the super-standardised mod-
els and associated behaviours afforded by a digital system?

How flexible is a digital object? You cannot reform a nuclear power
station, the inherent danger, and social requirements of such a sys-
tem mean that they should be dismantled. Such a technology pro-
vides one extreme, but what about an orange polythene traffic
cone? Can you throw it, wear it as a hat, shout through it? Given
this, how can you generate a computer model of an object and
those it might come in contact with supple enough to afford such
uses? To put it another way, how can you generate a software
architecture supple enough that the programmer or game designer
does not have to imagine all possible uses or scenarios, but allows
them to emerge through the interactions of inventive users? (This
is not the same as a form / content question such as that in which
an email client ‘contains’ all possible emails.) How can objects be
dumb enough to be complex?

Given that some form of simplification, reduction and exaggeration is
necessary or at least inevitable, how can the startling lives of objects
when the world is turned upside down, their own propensities for
turning and being turned be made palpable? The game, it should be
remembered, is not a simulation, and in its current prototype phase
Spring_Alpha has an intriguing suggestion. Composed in a way
that is explicitly modular, the landscape and artifacts of the housing

matthew fuller

estate are to have their properties visible and manipulable, to have
their properties and capacities emerge out of some mechanism of
use. Every object, such as a traffic cone, factory, house, cop or plate
of food will also include something along the lines of a patch famil-
iar from audio and video manipulation programs such as Pure
Data24 or Isadora.25 Patching systems provide a sophisticated way
of representing functions, procedures and relations between ele-
ments. Each object is a box potentiated with functions and
processes. The user creates a flow chart of boxes which function
to generate simple, or vastly complex interactions. Simon Yuill
who is leading the development of this project expects much of
the specific qualities of the program to emerge from workshops in
which characters, street objects and buildings are assigned quali-
ties to be remodeled as such ‘patches’. Participants will work
through the material culture of their surroundings and imagine
their reinvention. The project is in the very early stages of devel-
opment so the first version of this software will be the real point at
which it can be substantially discussed, but as a model this prom-
ises to find one way of combining the synthetic powers of soft-
ware with those of the social in a particularly compelling way.

This short, relatively naïve, account of the characteristics
and interconnections of digital objects in these projects

finds sustained and detailed work being done not simply
on software itself, but on what it handles, what it is

for and by which it is co-produced. Further
work on the terms and dynamics of the

differentiation and conjunction of
digital objects would take such an

account into realms of intense
details but also find a way

through the unbearable
massiveness of what

has been con-
tracted

.

39

Thanks to:
Graham Harwood, Matsuko Yokokoji, Mervin Jarman and Mandie
Beuzeval for discussions about nine; Shuddabrata Sengupta and
Lawrence Liang for high-speed info on OPUS Commons; and Simon
Yuill, Francis McKee, Eleonora Oreggia and Chad McCail for infor-
mation on early stages of Spring_Alpha.

1 See, Michel Serres and Peter Hallward, ‘The Science of Relations:
an interview’, in, Angelaki, vol.8. no. 2 issue editor: Peter Hallward,
Routledge, Oxford, 2003, p.231

2 David Wojnarowicz, ‘Postcards from America, Xrays
from Hell’, in, Close to the Knives, a memoir of disintegration,
Serpent’s Tail, London 1991, p.114

3 Walter Benjamin, ‘Paralipomena to ‘On the Concept of History’’,
in, Walter Benjamin, selected writings, volume 4 1938-1940, trans. Edmund
Jephcott et al., eds., Howard Eiland and Michael W. Jennings, Harvard
University Press, 2003, p.402

4 Walter Benjamin, ‘Eduard Fuchs, Collector and Historian’,
in, Walter Benjamin, selected writings, volume 3 1935–1938,
trans. Edmund Jephcott, Howard Eiland et al., Eds.,
Howard Eiland and Michael W. Jennings, Harvard University Press,
2002, p.260-302

5 Walter Benjamin, ‘Eduard Fuchs, Collector and Historian’, p.262
6 Walter Benjamin, ‘Eduard Fuchs, Collector and Historian’, p.262
7 see http://www.dyne.org/
8 http://www.scotoma.org/TextFm/
9 The software is written in Perl under the GPL, the current working ver-

sion was finished in 2002 and is currently in preparation for a possible
new round of development.

10 Social software as a term is used here in the sense of the 2002
essay, Behind the Blip. However, it is useful to recognize the subse-
quent use of the term for the more narrowly defined sense of software

40

which is used for social networking and analysis. A useful
overview of this area, amongst others is maintained by SebPaquet
http://www2.iro.umontreal.ca/~paquetse/cgi-bin/om.cgi?Social_Software

11 Harwood, in conversation, May 2004
12 http://9.waag.org/Help/ Nine is extremely clearly documented, primari-

ly through minimally annotated images.
13 http://www.imagineic.nl/
14 Opus Commons’ main site is at http://www.opuscommons.net/

This site is currently being updated and is thus only partially function-
al. A use of the system developed for the show How Latitudes Become For

ms: Art in a Global Age curated by Steve Dietz is available at
http://opus.walkerart.org/

15 http://www.sarai.org/
16 One feature of Opus is that there is a set of requirements for

someone to register as a user. Possibly, the design of the user as an object
is perhaps too present as a schematic to be inviting of easy initial use.
As with nine, how the user function is entangled with the author posi-
tion —and the repressions and opportunities this affords —by this regis-
tration process would be worth considering.

17 See, for the text of this license: http://www.gnu.org/copyleft/gpl.html
18 For a discussion of open content licenses in general see,

Lawrence Liang’s forthcoming review of the spectrum of such licenses at
http://pzwart.wdka.hro.nl/

19 A related project is Raqs Media Collective, A Concise Lexicon of / for

the Digital Commons, available at http://www.sarai.net/compositions/
texts/works/lexicon.htm

20 More detailed descriptions of these terms are given in the
Opus Commons user manual

21 from Opus Commons manual
22 http://www.spring-alpha.org/
23 Natalie Jeremijenko’s ‘One Tree’ project is interesting in relation to this.

Several hundred clones of one tree are sited at sites with a range of differ-
ent socio-ecological features. Mapping what happens to these no longer
identical trees over the years of their lives forms the core of the project.

24 http://pure-data.sourceforge.net/
25 Isadora software is at www.troikatronix.com

Thanks to Scott de la Hunta for a demo of this work.

