
105JAVIER CANDEIRA

TOWARDS A PERMANENTLY TEMPORARY SOFTWARE ART FACTORY

(NOTES FOR THE SUSTAINABILITY OF SOFTWARE ARTIFACTS)
JAVIER CANDEIRA

HTTP://FREESOFTWAREART.ORG

Javier Candeira is issuing a call to arms, leaping into the role of
evangelist for the packaging and distribution of free software art
wish great energy. He offers three primary goals for this project. First,
to allow and promote code sharing between artists and therefore
increase their productivity. Second, to facilitate software art distribu-
tion of easily installed packages. Finally, to aid conservation of soft-
ware artworks through community maintenance of these packages.

Candeira’s vision is compelling, one of a community helping each
another freely, sharing their work openly and preserving their work
for future generations. Further, his arguments are persuasive,
instilling a sense of urgency, artwork being lost to bad licenses and
ineffective distribution mechanisms.

In the style of a FAQ list, Candeira goes through many possible objec-
tions to Free Software Art, particularly those potentially held by
software artists themselves. This forms a tightly argued, combative
piece, using forthright language of evangelists from the wider free
software world to head off many potential counter-arguments
before they can be made.

So while Candeira’s work leads towards a project with clear aims and
direction, it leaves a great deal of room for dialogue of greater
breadth and subtlety. Many software art mantras, such as «release
early, release often» simply may not apply to software art. Further,

106 PROJECTS

not all artists are so interested in wide distribution of their work,
or in other people being able to pick through their workings, and
gentler encouragement and debate may be required before they join
a free software community. Indeed we might consider many culture
clashes between existing free software communities and the free
software artist community that Candeira encourages here.

But even with these doubts and more on our minds, we must look on
with hope that something of great interest and worth can come of
such a project. Reading between the lines we understand that
Candeira is working towards a software art orientated sub-distri-
bution of the Debian linux distribution. We wish him well.

A l e x M c L e a n

Abstract:
Free Software has already proved to be a viable method for devel-
oping operating systems and business applications such as
Debian GNU/Linux and the OpenOffice.org suite.This paper
explains why Free Software has a great deal to offer to the practi-
tioners of Software Art, and why releasing Software Art works
under Free licenses will help in their production, distribution and
conservation. Some of those benefits will be derived from the
licensing process, and some from the subsequent packaging by
Free Software distributions. Finally, frequently asked questions
about this project are answered in an accessible manner.

Table of Contents:
— Free Software Art Manifesto
— Frequently Asked Questions
— Terms and Conventions.

107JAVIER CANDEIRA

Free Software Art Manifesto
Software Art does not belong in a museum vault, but in a work-
ing processor, wherever that processor is located. When the art-
work is removed from physical artifacts, the question of accessi-
bility ceases to be about the audience’s access to the work, but
about the work’s access to the audience’s processor.

In order to have access to its audience, the work must first be able to
be run on a wide range of hardware; second, it must be able to
find its audience; and finally it has to endure the passage of time,
if by «audience» we don’t merely mean «audience at the time the
work is created».

Therefore, Software Artists are advised to ahere to the Free Software
ethos and methodology of software development, which fulfills
the three objectives of enabling Production, Distribution and
Conservation of software artworks.

Production
Most artists dealing with technology find that their first hurdle is
acquisition of technical know-how, and that they often can’t find
assistance outside their social circle.The communal development
methods of Free Software provide Software Art practitioners with
a technically-gifted community of peers and mentors.

Sof t ware Artists Ship Code

Code reuse is very important in software development, and therefore
in Software Art. Artists want to express their worldview, not to
reinvent the wheel.The use of Free Software allows code creators
to reuse code more effectively, and to build upon the work of oth-

108 PROJECTS

ers not only technically, but also artistically, in a time-honoured
tradition both of old masters and modern movements.

Production of Software Art is not only a technical and artistic process,
but also a legal and economic one. Institutions funding software
works request the assurance that they will be able to show and dis-
tribute the work they commission . As more and more institutions
demand full freedoms for the work they paid for, software artists
can help to fund their work by using Free Software both as their
technical infrastructure and their licensing model.

Working with Free Software developers and the maintainers involved
in its distributions will also help artists to navigate the sea of
different Free Software licenses and to understand their
implications.

Distribution
These are terms that have been long understood by practitioners
of more demotic arts, like the novel and cinema: as soon as access
to the means of production is acquired, and the cost of building
the work is met, there are three aspects to a reproducible work’s
success: distribution, distribution, and... distribution.

Obscurity Is An Artist ’s Worst Enemy

Licensing software artworks under Free licenses allows for their
inclusion in Free Software distributions, or «distros», By making
the artworks part of their automatically installable and upgrade-
able repositories, distros allow any individual or institution to
access the software programs for themselves or to present them
to others.

The usage of free licenses is a legal guarantee of wider availability
and diffusion: the technical possibility of diffusion and ease of
installation is no guarantee if the works are limited by copyright
law to particular geographical areas, social groups, or fields of
endeavour.

109JAVIER CANDEIRA

The characteristics of availability of source code and its modifiability
by third parties also help with distribution to other platforms:
Free Software is often «translated» or «ported» to run on differ-
ent hardware than the one originally used by the artist.

Conservation
An actively maintained Free Software distro’s repository is a liv-
ing artifact, not a dead pile of code that once ran. Libraries are
updated, and programs recompiled to adhere to new standards
and run on new platforms, all without vendor troubles or time
limitations.

Software Is A Process, Not A Product

The Free Software maintenance process solves the issue of conserva-
tion of Software Art works. Licensing software artworks under
Free licenses allows for their inclusion in Free Software distros,
thus making their conservation part of that process.

Software Art works require a physical substrate to survive, and that
substrate, the computer, quickly becomes obsolete. A software
artwork included in a Free Software distribution survives its
original hardware and circumstances.

The fact that libraries are free to use without restriction also saves the
work from vendor obsolescence as the work is not tied to propri-
etary code that ceases to be available if the vendor disappears or
stops renewing their software licenses. Even in the case that one
particular distribution stops being updated, all the code is still
available to be picked up by another distribution.

Finally, the use of free licenses is also a guarantee of wider temporal
availability and diffusion: works are no longer limited to the peri-
od of one exhibition by the owners of some of the assets, as free
software is essentially available to everyone, forever. Free
Software artworks do not have to wait until they lapse into the
Public Domain for an enterprising curator to revive them .

Posterity Can’t Wait Until Tomorrow

Free Software Art
Individual artists like David Griffith (Fluxus), projects like the
Open Art Network (The Great Game(boy)) and even loose net-
works of hacker-activists (Carnivore) are now freeing their code
in order to fulfill the promise of sharedness and open access for
the practice of Software Art. Some of their works are starting to
seep into Free Software distributions, again thanks to individual
efforts.These individual efforts need to progress into more co-
ordinated ones, a «rough consensus and running code» meta-
project of artists freeing their code and Free Software distribu-
tion maintainers packaging it for ease of access and conservation.

The Free Software Art movement does not yet exist as such, but its
seeds are already in both communities, especially in the handful
of individuals who inhabit the intersection of both cultures.

Free Software Art: it can either mean «Software Art whose code is
Free», or an imperative call to «liberate Software Art» from obsoles-
cence, obscurity and oblivion. Let’s do it. Let’s Free Software Art.

Frequently Asked Questions about Free Software Art.
Yes, people really ask this stuff!
How do I make a living if my code can be copied by anyone?

The same way you make it now. If you think you can make more
money by closely guarding your code so nobody can use it with-
out permission, by all means dig your own hole of obscurity and
irrelevance. It is a bloody lottery, and you may well be the next
Toshio Iwai. But this is the real world, where there is only one
Toshio Iwai, and most of us will never be published by
Nintendo. The question boils down to what are your other
choices.
This is the real world where 99,9% of software artists make a liv-
ing by teaching, doing gigs at festivals, getting commissions

1 10 PROJECTS

from museums and institutions if they are lucky, working for
other artists (roboticists, old-school installation artists wanting
to update their craft), writing code for commercial software
companies, consulting for other type of businessess and waiting
tables. In this world, getting your code to the higher number of
people out there is the best way to make yourself a name and live
on the ancillary benefits of public recognition. So if you want to
make a living as an artist you would do well by promoting the
distribution of your work by any means, including making your
code Free for anyone to copy it, study it, use it in their own work.

But won't everybody else then be able to make money off my code?
Yes. Anybody will be able to teach with it, perform with it live,
curate exhibitions in which it will be shown. And they will get
money for that. And you won’t get any of their money.

But it's unfair!
Well, put it this way: what would you rather have, 100% of a pal-
try earning, or 1% of a take more than 100 times bigger? The dif-
fusion afforded by Free Software allows more people’s work to
achieve more relevance, and to collect a smaller share of a higher
amount of returns from their work.
Let me give you an example using Processing, the Free software
development tool for artists: Casey Reas and Ben Fry, the pro-
ject’s originators, get the sweetest gigs teaching Processing semi-
nars.They are the ones who go to Ars Electronica and collect a
Golden Nica, and also derive other benefits from their centrality
to a Free Software project that is so important to the Software
Art scene. Casey is writing the Processing book, and if there were
two books most people would buy his.This is as fair as I can
think. If what you are saying is that they should teach all the
Processing seminars in the world and write all the books about
Processing for all publishers, I don’t think this would be fair for
others, and it wouldn’t be fair for them either.

1 1 1JAVIER CANDEIRA

1 12 PROJECTS

But then other people will retread my work by running my code, and my
brilliance will become trite and cliched!
That is as fair a question as you could have posed, and you are
right. But it is also true that if you are succesful people will emu-
late you, copy you, and reduce you to cliche anyway. Seen this
way, having your code out there might even raise the standard for
emulators (people who emulate other people, not code that emu-
lates other hardware platforms).

But I don't want anyone to tweak my code a bit and claim it's theirs!
The 19th Century called; it wants its novelists back. If you wanted
a real answer, well, most Free Software licenses do not authorise
anyone to say your code is theirs, as copyright notices must nor-
mally be maintained. Also, we live a world where hex editors exist
and anyone can illegaly modify any binary code and say it’s theirs
anyway without a Free License; bootleggers do it all the time with
oldschool videogame ROMS. You are complaining about a prob-
lem that you might already have if you had shipped any code, and
that this project doesn’t do anything to worsen. Jeez!

But people might think my work is bad because someone modified it but it
still carries my name!
Free Software licenses can and do include clauses stating non-
endorsement by you of what other people do.There are conflict-
ing opinions on whether licenses with clauses requiring that the
changed binary has a different name are completely free, but code
under such licenses are included in Free Software distributions
such as Debian. And you can always publicly ridicule anyone who
makes an ass of themselves by spoiling your precious code.

Doesn't packaging modify the original artwork?
It does and it doesn’t. A Debian package contains your original
source code in its original pristine form, and all the changes made
by the packager are stored in separate files called patches.This way
you, your users and art historians of the future can have the best of
both worlds: integrity of the artwork and full compatibility of the
binary.

But my artwork depends on a very specific and unique piece of hardware!
If your artwork is only true to itself if it runs on a unique and par-
ticular piece of hardware that cannot be reproduced, then it is an
art installation, not software art according to our definition, it
could never be packaged and distributed anyway, and you are
reading the wrong FAQ.
And if that specific and unique piece of hardware is an old com-
puter that most people can’t have access to, maybe we can repro-
duce it under emulation, and have your Software Art work run on
that emulator.

A legal-technical intervention on the
Political Economy of Software Art

Doesn't emulation modify the original artwork?
That is a bit of a conundrum for which I have two answers; and
both of them are «no»:

a) An emulator is something that stands in for hardware.The pro-
gram can’t tell a good emulator from the original hardware, and
neither can the audience/user/operator. We all like vintage
machines, but emulation is good for those who can’t afford them,
and what goes for videogames goes also for software art pieces.

b) Software art pieces are like theater plays. Consider this
metaphor: software is run the way theater plays are played. If the
code is Shakespeare’s Hamlet, it can be played on any hardware:
Gibson+Zefirelli+cinematography, funny_guys+IRC,
paper+your_brain, Ethan_Hawke+Bill_Murray+awesomeness,
TheRoyalShakespeareCompany+a_theatre.

What if a package is abandoned and ceases to be updated?
An abandoned package can leave the work in a much better state
than the original code, and never in a worse one. It contains the
original code plus metadata about its conservation history in the
form of changelogs and patches. Patches amount to decisions by
a conservator, and some of those patches will incorporate

1 13JAVIER CANDEIRA

1 14 PROJECTS

changes done for policy reasons, but some of them will be bugfix-
es in the original code or adaptations for later technology.
So even if your work is packaged today, maintained for fifty years
and then abandoned, it will be in a much better state when the
2105 arrives and your school experiences a centenary revival.

What if Debian(or Fedora/BSD/Whatever) ceases to exist?
Allow me first to say that Debian or BSD can die, yes. But I can’t
envisage any scenario in which Debian or BSD can die without Free
Software being made illegal and a worldwide Martial Law being
established by hostile aliens from some dorky kid’s imagination.
Seriously, Debian, the *BSD and RedHat/Fedora will exist, in
some form or another, for as long as Free Software exists.They
might change names, splinter into derivatives or merge into the
One True Distribution, but the goals of this project can be
upheld as long as there is still one Free Software Distribution.

What if Free Software is just a fad?
Then Google and Amazon and Yahoo! will go away and disap-
pear forever, and so will IMDB and most of the world DNS and
HTTP servers, and most of the companies rendering FX for
Hollywood films and... . If Free Software turns out to be a fad,
the flying pigs covering the sun will give you enough food for
thought that you will forget about your Software Art.

What if Software Art is just a fad?
I don’t think software art will ever go away either.The label
might, but generative art, experimental videogames and self-
made performing tools are here to stay, among other sub-genres
of what is now called Software Art.
I might be wrong too, and Sofware Art could well be, as the gen-
tleman scholar who asked me this question feared, destined to
wane as quickly as it has waxed. In that case its conservation is
more needed than everything, and the distro-packaged Free
Software Art works will be the best maintained collection of arti-
facts from this particular period in the history of art and tech.

The 19th Century called;
it wants its novelists back

Isn't Runme.org already doing this?
They are and they aren’t.They invited me to give this talk, and
write this paper, and paid my trip, my hotel and a fee. I am grate-
ful of that, and that is a way for them to support the project. But
then they aren’t doing it themselves, because although the aims
of a Free-Software-Art initiative overlap with their charter, the
overlap is incomplete.
By their own commitment to the form, runme.org select and
curate software art under all types of licenses, including non-
distributed (just exhibited and performed) and undistributable
works. Some of those are undistributable because they are not
under free licenses, and some are because... they aren’t even
pieces of software as such. The promotion of Free Software
among software artists is not their main priority: it is ours.
Free-Software-Art is about software distributed under Free and
Open Source licenses. It is about putting software artworks in
Free Software distributions, and that is work that has to be done
from inside the distributions themselves. Runme.org could serve
as a bridge between artists and distros, but the packaging still has
to be done.

Isn't Jaromil/$name already doing this?
Jaromil is already doing the first part of this: by releasing his own
work under free licenses, he is making sure that his work is
accepted into distributions such as Debian and Fedora, which
will make his work more long-lasting, will help other creators
learn and work from his code, and serves also as a great example.

The second part of the process, the systematic packaging of Software
Art works inside distros, is something that is just too big for one
person. A distribution is not only a CD you can install on your
computer, or an online-accessible repository of all their programs.

1 1 5JAVIER CANDEIRA

It is also the process of co-ordinated communication and team-
work amongst the thousands of maintainers and original pro-
gram developers, a process that can survive any given individ-
ual’s personal effort.

Aren't institutional archives already doing this?
No, they aren’t. And they aren’t at so many levels that this answer
could easily be an article in its own right.
It is true that many institutions are starting archiving efforts, but
merely archiving a software artwork is not the same as conserving
it. An archived Software Art work is not running on a processor,
it is merely stored in some mass storage media. It is resting, if not
pining for the fjords. Geographical, technical, legal and econom-
ical hurdles preclude most people from access to those works,
perfectly archived as they may be.
Even well-funded organisations face legal and economical chal-
lenges when trying to archive and make available the works they
have the rights to. Access to these works for the world at large
will still have to wait until they lapse into the Public Domain. We
are mortals, and copyright terms nowadays are, by design, much
longer than the average human’s life. Archiving is not enough!.

What will this accomplish for Art and Culture?
Culture is that which is shared. Free Software encourages the
spreading of ideas, the sharing of code and know-how, and the
building on the base of other people’s accomplishments.
Also remember that the practice of art is not just something
artists do. Art historians and archivists also play a part, and Free
Software Art allows them to keep the works alive in a usable state.

Right, Free Software is good for society as a whole, but what will it
accomplish for artists?
Artists will accomplish more visibility for themselves by choosing
Free licenses for their work. Free distributions will be able to pack-
age their work, and will do so either due to personal interest of indi-
vidual developers, or with funding from museums and institutions.

1 16 PROJECTS

1 17JAVIER CANDEIRA

Unless a software artists want to package their work themselves,
packaging and funding is up to individual distro maintainers and
curators. Artists can talk others into packaging their work into
Free Software distributions as much as they can talk others into
exhibiting their work: that hasn’t changed much.

Won't this perpetuate the existing models if funded projects can get their
projects packaged by paying?
Not really. Under the current model, funded artists get into
museums and galleries, and their work gets out to people through
their channels and the festival circuit. Unknown artists remain
unknown unless they gain access to the insitutional scene and
circuit. If artists release their work under Free licenses, it can get
into Free Software distributions on equal footing with institutional-
funded work. Free Software enhances the opportunities of experi-
encing all the Software Art in the world to a global audience, and
the opportunities of having their work experienced by the world to
all software artists.
Put it another way: although making Software Art Free won’t
reverse all inequalities, a world with a Free Software Art scene is
a more level playing field for new, aspiring and unnafiliated
artists than one in which there is no such scene.

Archiving is not enough!

Won't this get a lot of bad art/code into the archives or Free Software dis-
tro repositories?
Probably. But bad art abounds anyway.The focus is in getting all
art conserved so historians and scholars of the future will be able
to understand software art.The purpose of a Free-Software-Art
project is not to make a canon, or to select «good» art and have
that preserved.The purpose is to allow all Software Art to get
produced, distributed and conservated, and let Art History sort
the good from the bad.

Your examples are not the ones I would use! I know more canonical
Software Art!

Earlier drafts of this paper used the word «canonical» to refer to my
examples (see Terms and Conventions). By «canonical» I never
intended to mean «belonging to an artistic-historical Canon». I
meant «standing for all that share the same characteristics».The
main characteristic of the software packages listed, apart from
their Software-Art-ness, is that they are under a Free license,
and they do not depend on non-free code.

Many works of art could be released under a Free license but still not
be freely distributable due to their dependence on non-Free
code. Some of them (hacks on commercial games, works where
the absence of source is part of the artistic statement) will never
be distributable, and we can live with that.This does not mean
we don’t like them as artworks, just that we can’t include them in
our packaging effort.

But Pure Data and Processing are not Software Art, they are tools!
Agreed, but artists working with Free code need Free tools and
freely-distributable runtimes too. Free Software Art is not a
purely artistic project, but rather a legal-technical intervention
on the Political Economy of Software Art.Thus Pure Data and
Processing are included as «source code that will inevitably be
part of Free Software Art works», although they are not works of
Software Art per se.

Why don't you do this project on Windows? I code on Windows! Linux is
scary/difficult/not my cup of tea!
This project is currently at the proposal stage, and it is being pro-
posed on Free Software distros because they are the ones that
allow people to do things like distribute livecds that contain
whole Software Art collections in them, or deploy unexpensive
machines in schools without paying expensive per-machine
licenses for the Operating System.

As to you and your code, you don’t have to do anything you don’t
want to.This is the beauty of Free Software: if you free your code

1 18 PROJECTS

for whichever platform you work on, you will allow Linux people
to do the scary/difficult/not your cup of tea thing and port it to
Linux. Or the Mac, or whatever. It really is a win/win situation.

Terms and conventions used in this paper:
For the purpose of this paper,

A Distribution is both a codebase and the people who develop and
maintain it. A distribution project compiles a kernel (Linux,
BSD, Hurd, OpenSolaris) plus tools and userland applications
into an Operating System.This can be delivered in physical form
(in CD form) or online, through special servers called reposito-
ries. Debian, Red Hat, and FreeBSD are all Free Software distri-
butions according to this definition.

Free Software is that which can be freely used, copied, modified, and
distributed in unchanged or modified form. Free here means
«libre», not «gratis»: hence Free Software can be sold and still be
Free as in free speech, although maybe not free as in free beer.
The requisite of modificability of Free Software requires for its
source code to be available.This is why some people prefer to call
it by the name Open Source Software.

Free Software and Open Source are, outside very extreme edge cases,
functional synonyms, as there are virtually no Open Source pro-
grams that are not Free according to either Debian or the Free
Software Foundation, and there are hardly any Free Software
programs that are not Open Source. I use «Free Software» or
«Software Libre» throughout, but if you want to use «Open
Source», it is mostly ok, as long as you mean Open Source to
carry the connotations of «free to modify and distribute» as well
as «has available source code».

Software Art is whatever you want to make of it, but for the purpose
of this paper and for Software Art packaging efforts, «software
art»means «code that compiles into aesthetic objects, into artistic

1 19JAVIER CANDEIRA

120 PROJECTS

performance tools, or into tools specifically designed and pro-
moted for artists creating the previous two categories». Free-
Software-Art is a software packaging effort, so it deals with soft-
ware which can be distributed and run on generic hardware.

What is and is not Software Art is fuzzy, as many categories are not
binary, but rather points in a continuum.The following examples
stake out some territory of Software Art by using examples
whose licenses are free and depend only on free code:

Category Example

Standalone applications Electric Sheep (distributed generative
screensaver)

Client-server applications Carnivore (online surveillance tool)
Performance instruments Fluxus (scheme-based GPL visuals

livecoding tool)
Art games and game mods Rrootage,Transcend, Fijuu
Coding Platforms * Processing, Pure Data (code that com-

piles into aesthetic objects)
Social Web Services Everything2

Packaging means preparing a composite of a program’s compiled
binary (or its data) plus the appropiate metadata in a format that
can be automatically installed by an operating system. As our
project is about, we will talk about packaging for Free Software
distributions such as GNU/Linux, the BSD family, OpenVMS
or your own homecrafted one. Red hat .rpm files are packages,
and so are Debian .deb files. BSD packages are called ports, but
for the purpose of this talk they are also packages, and the process
of making a raw source code tarball into a port will be called
«packaging».

* Not Software Art per se; included as coding platforms specifically designed
for and aimed at Software Artists

1 Julian Oliver aka Delire, the factotum of Art Gaming website Selectparks.net,has this
to say about Free Software as an enabler for software artists: «artists wanting to sell work
to museums and/or have work shown in museums/galleries have hit a legal ‘glass ceiling’ due
to the issue of IP». http://games.slashdot.org/comments.pl?sid=158904&cid=13310740

2 Or try to fruitlessly in the absence of source code.
3 At Ars Electronica 2005, during the Digital Archives Conference, the representative

from Medienkunstnetz.de Rudolf Frieling talked about their project having taken
«3 years, which is not long if you take into account the copyright issues», and Matt Locke,
from the BBC archive, said that their project had taken «2 years because of negotiations
with rightholders».

